为分析流体流动与圆柱簇运动之间复杂的流固耦合(FSI)作用,提出一种针对亚临界雷诺数下不同间距比和约束条件对串列三圆柱流致振动影响的研究。通过采用三维数值的计算方法,研究在雷诺数Re=(2.6966~8.0899)×104、间距比L/D=1.7~5.0和约化速度Ur=3.67~11.0范围内的3个等尺寸串列圆柱的横向流致振动现象,通过对比无量纲振幅、频率、升力系数和捕获效率,分析串列三圆柱的流固耦合动态响应特性。研究发现:当间距比L/D=3,且上游圆柱固定不动时,中下游圆柱的振动效果最为强烈,此时上游圆柱振动锁定的区域明显变宽,并且在锁定区域内振幅明显高于其他间距工况,表明不同间距和约束条件布置时,多圆柱间的振动效应不同。
Abstract
In order to analyze the complex fluid-structure coupling between fluid flow and the movement of cylindrical clusters, a new method is proposed in this paper to study the effects of different spacing ratios and constraints on the flow induced vibration of a series of three cylinders at subcritical Reynolds number is presented. The transverse flow induced vibration of three equidimensional series cylinders in the reynolds number range of 2.6966×104 to 8.0899×104, spacing ratio range of 1.7 to 5.0 and reduced velocity range of 3.67 to 11 is studied by using three-dimensional numerical method. By comparing dimensionless amplitude, frequency, lift coefficient and captured energy efficiency, the fluid-structure coupling dynamic response characteristics of a series of three cylinders are analyzed. It is found that when the spacing ratio at 3 and the upstream cylinder is fixed, the vibration effect of the middle and downstream cylinder is the strongest. At this time, the region of the upstream cylinder locked by vibration is obviously wider, and the amplitude in the locked region is significantly higher than that in other spacing conditions. It is shown that the vibration effects between multiple cylinders are different with different spacing and constraint conditions.
关键词
海流能 /
圆柱 /
动力响应 /
计算流体力学 /
流致振动 /
能量捕获
Key words
ocean current energy /
circular cylinders /
dynamic response /
computational fluid dynamics /
fluid-induced vibration /
energy capture
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 白旭, 乐智斌, 张焱飞. 质量比对圆柱体流致振动能量捕获效率的影响[J]. 太阳能学报, 2018, 39(12): 3325-3330.
BAI X, LE Z B, ZHANG Y F.Effect of mass ratio on energy capture efficiency of vibration induced by cylinder flow[J]. Acta energiae solaris sinica, 2018, 39(12): 3325-3330.
[2] 罗竹梅, 聂聪, 郭涛. 涡激振动驱动的柱群结构集中俘获海流能研究[J]. 太阳能学报, 2021, 42(4): 89-94.
LUO Z M, NIE C, GUO T.Study on centralized harvesting ocean current energy with column-group structure by VIV[J]. Acta energiae solaris sinica, 2021, 42(4): 89-94.
[3] SUKARNOOR N I M, QUEN L K, ABU A, et al. An investigation of the dynamic behaviour of two rigid cylinders in a tandem arrangement under vortex-induced vibration[J]. Journal of ocean engineering and science, 2022
[4] KHAN H H, ISLAM M D, FATT Y Y, et al.Flow-induced vibration on two tandem cylinders of different diameters and spacing ratios[J]. Ocean engineering, 2022, 258: 111747.
[5] XU W H, WU H K, JIA K, et al.Numerical investigation into the effect of spacing on the flow-induced vibrations of two tandem circular cylinders at subcritical Reynolds numbers[J]. Ocean engineering, 2021, 236: 109521.
[6] 刘振雷, 娄敏, 王晓凯, 等. 不同间距比下串联圆柱涡激振动数值模拟研究[J]. 舰船科学技术, 2022, 44(22): 76-82.
LIU Z L, LOU M, WANG X K, et al.Numerical simulation research on vortex-induced vibration of series cylinders with different spacing ratios[J]. Ship science and technology, 2022, 44(22): 76-82.
[7] 郭凯, 程雨轩, 唐博文, 等. 不等直径双圆柱流致振动能量转换特性研究[J]. 太阳能学报, 2023, 44(9): 1-8.
GUO K, CHENG Y X, TANG B W, et al.Numerical simulation of energy harvesting from flow induced vibration of different diameter cylinders[J]. Acta energiae solaris sinica, 2023, 44(9): 1-8.
[8] QIU T, ZHAO Y, DU X Q, et al.Vortex-induced vibration of two tandem square cylinders with different restraint conditions[J]. Ocean engineering, 2023, 273: 113946.
[9] CHEN W L, JI C N, WILLIAMS J, et al.Vortex-induced vibrations of three tandem cylinders in laminar cross-flow: vibration response and galloping mechanism[J]. Journal of fluids and structures, 2018, 78: 215-238.
[10] 朱红钧, 钟家文, 宋金泽. 串列三圆柱流固耦合响应的尾流干涉与动态演变特性研究[J]. 力学学报, 2024, 56(4): 1178-1186.
ZHU H J, ZHONG J W, SONG J Z.Study on the wake interference and dynamic evolution characteristics of the fluid-structure interaction of three tandem circular cylinders[J]. Chinese journal of theoretical and applied mechanics, 2024, 56(4): 1178-1186.
[11] HAN P, HUANG W X, QIN D H, et al.An analytical model for estimating the maximum energy harvesting efficiency from vortex-induced vibration[J]. Journal of fluids and structures, 2023, 122: 103961.
[12] 刘爽. 低雷诺数下并列圆柱涡激振动的数值模拟及其机理研究[D]. 天津: 天津大学, 2014.
LIU S.Numerical simulation and mechanism study of vortex-induced vibration of parallel cylinders at low Reynolds number[D]. Tianjin: Tianjin University, 2014.
[13] MEYER M, HICKEL S, ADAMS N A.Assessment of implicit large-eddy simulation with a conservative immersed interface method for turbulent cylinder flow[J]. International journal of heat and fluid flow, 2010, 31(3): 368-377.
[14] BREUER M.Large eddy simulation of the subcritical flow past a circular cylinder: numerical and modeling aspects[J]. International journal for numerical methods in fluids, 1998, 28(9): 1281-1302.
[15] OUVRARD H, KOOBUS B, DERVIEUX A, et al.Classical and variational multiscale LES of the flow around a circular cylinder on unstructured grids[J]. Computers & fluids, 2010, 39(7): 1083-1094.
基金
广西科技重大专项(桂科AA22068105)