针对双线性臂驱动的五边形定日镜,构建48.5 m²的正五边形定日镜模型,采用SST k-ω湍流模型进行数值模拟。研究的主要目的是评估其表面风压及周围流场特性,并分析不同仰角下的阻力系数和压力分布。此外,利用静力学结构分析模块探讨风压对镜面形变的影响。模拟结果表明,阻力系数随仰角的增加而逐渐上升,最大阻力系数达到1.28。同时,结构-流场耦合分析显示,当仰角为90°时,镜面的形变达到最大,形变量为6.24 mm,且最大形变位置位于定日镜上方的尖角处。
Abstract
For the pentagonal heliostat driven by a dual linear-arm drive, a model of a regular pentagonal heliostat with an area of 48.5 m² was constructed, and numerical simulations were conducted using the SST k-ω turbulence model. The primary objective of the study was to evaluate the surface wind pressure and surrounding flow field characteristics, as well as to analyze the drag coefficient and pressure distribution at different elevation angles. Additionally, the impact of wind pressure on mirror deformation was examined using a static structural analysis module. The simulation results indicated that the drag coefficient gradually increases with the elevation angle, reaching a maximum value of 1.28. Furthermore, the structure-flow coupling analysis revealed that the deformation of the mirror reaches its maximum at an elevation angle of 90°, with a deformation value of 6.24 mm, and the maximum deformation occurs at the sharp corner above the heliostat.
关键词
定日镜 /
流场 /
变形 /
风荷载 /
数值模拟
Key words
heliostat /
flow field /
deformation /
wind load /
numerical simulation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] EMES M J, ARJOMANDI M, GHANADI F, et al.Effect of turbulence characteristics in the atmospheric surface layer on the peak wind loads on heliostats in stow position[J]. Solar energy, 2017, 157: 284-297.
[2] MAMMAR M, DJOUIMAA S, GÄRTNER U, et al. Wind loads on heliostats of various column heights: an experimental study[J]. Energy, 2018, 143: 867-880.
[3] JAFARI A, EMES M, CAZZOLATO B, et al.Turbulence characteristics in the wake of a heliostat in an atmospheric boundary layer flow[J]. Physics of fluids, 2020, 32(4): 045116.
[4] 吴卫祥, 李正农, 王志峰. 塔式太阳能定日镜抗风设计参数研究[J]. 太阳能学报, 2021, 42(6): 191-197.
WU W X, LI Z N, WANG Z F.Investigation on wind-resistant design parameters of solar power tower’s heliostat based on wind tunnel experiments[J]. Acta energiae solaris sinica, 2021, 42(6): 191-197.
[5] 王延忠, 陈燕燕, 臧春城. 基于流固耦合的定日镜风载作用变形分析研究[J]. 太阳能学报, 2016, 37(4): 1078-1084.
WANG Y Z, CHEN Y Y, ZANG C C.Deformation research of heliostat in wind load by fluid-structure interaction method[J]. Acta energiae solaris sinica, 2016, 37(4): 1078-1084.
[6] 朱春燕, 李正农, 王迎春. 大规模定日镜群镜面脉动风压特性研究[J]. 太阳能学报, 2021, 42(7): 199-206.
ZHU C Y, LI Z N, WANG Y C.Study on pulsating wind pressure characteristics of large scale heliostats[J]. Acta energiae solaris sinica, 2021, 42(7): 199-206.
[7] FADLALLAH S O, ANDERSON T N, NATES R J.Fluid-structure interaction analysis of a lightweight sandwich composite structure for solar central receiver heliostats[J]. Mechanics based design of structures and machines, 2023, 51(10): 5737-5766.
[8] BELAID A, FILALI A, GAMA A, et al.Design optimization of a solar tower power plant heliostat field by considering different heliostat shapes[J]. International journal of energy research, 2020, 44(14): 11524-11541.
[9] BLUME K, RÖGER M, PITZ-PAAL R. Full-scale investigation of heliostat aerodynamics through wind and pressure measurements at a pentagonal heliostat[J]. Solar energy, 2023, 251: 337-349.
[10] 曾宇, 汪洪波, 孙明波, 等. SST湍流模型改进研究综述[J]. 航空学报, 2023, 44(9): 027411.
ZENG Y, WANG H B, SUN M B, et al.SST turbulence model improvements: review[J]. Acta aeronautica et astronautica sinica, 2023, 44(9): 027411.
[11] MAMMAR M, DJOUIMAA S, HAMIDAT A, et al.Wind effect on full-scale design of heliostat with torque tube[J]. Mechanics & industry, 2017, 18(3): 312.
基金
国家重点研发计划(SQ2020YFF0413296)