基于互感动态识别的波光互补装置水下无线电能传输控制策略研究

夏涛, 吴翟铮, 张小亮, 夏彧飏, 刘海涛, 张仰飞

太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 667-674.

PDF(2712 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2712 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 667-674. DOI: 10.19912/j.0254-0096.tynxb.2024-1223

基于互感动态识别的波光互补装置水下无线电能传输控制策略研究

  • 夏涛1, 吴翟铮1, 张小亮2, 夏彧飏1, 刘海涛1, 张仰飞1
作者信息 +

RESEARCH ON THE CONTROL STRATEGY OF UNDERWATER WIRELESS ENERGY TRANSMISSION OF WAVE-OPTICAL COMPLEMENTARY DEVICE BASED ON MUTUAL SENSING DYNAMIC IDENTIFICATION

  • Xia Tao1, Wu Zhaizheng1, Zhang Xiaoliang2, Xia Yuyang1, Liu Haitao1, Zhang Yangfei1
Author information +
文章历史 +

摘要

随着中国海洋资源开发,水下探测设备被大量布置在海域内,其电能供给成为装置长期运行面临的重大难题。针对以上问题,提出一种基于波浪能和光伏互补供电的水下电能传输装置,利用波浪能和太阳能的天然互补性,能为装置提供稳定电力来源,同时结合无线电能传输的非接触特性,实现海洋环境下探测设备电能安全传输。通过对发电系统设计、耦合装置分析、动态互感识别、能量传输设计以及双侧协调控制,实现水下电能传输和最大效率跟踪控制。最后,搭建实验平台进行海水环境中电能传输实验,结果表明:装置能实现约260 W电能传输,且互感从20 μH到50 μH变化时,能通过互感识别和双侧控制实现在负载区间20 Ω到50 Ω变化时,恒压模式下维持最大效率在90%左右。

Abstract

With the development of China's marine resources, underwater detection equipment is arranged in large quantities in the sea, and its power supply has become a major problem facing the long-term operation of the device. In view of the above problems, this paper proposes an underwater power transmission device based on complementary power supply of wave energy and photovoltaic, which can provide a stable power source for the device by taking advantage of the natural complementarity of wave energy and solar energy, and at the same time, combine with the non-contact characteristics of radio energy transmission, to realise the safe transmission of power for detection equipment in the marine environment. Through the design of the power generation system, analysis of the coupling device, identification of dynamic mutual inductance, design of energy transmission, and coordinated control of both sides, the underwater power transmission and maximum efficiency tracking control are realized. Finally, the experimental platform is built and experiments on seawater power transmission are carried out, and the results show that the device is able to achieve a power transmission of about 260 W, and when the mutual inductance varies from 20 μH to 50 μH, the mutual inductance recognition and bilaterally coordinated control are able to achieve the output of about 90% of the maximum efficiency in the constant voltage mode when the load interval varies from 20 Ω to 50 Ω.

关键词

波浪能 / 太阳能 / 电能传输 / 最大效率跟踪 / 双侧控制 / 互感识别

Key words

wave energy / solar energy / power transmission / maximum efficiency tracking / bilateral control / mutual sense identification

引用本文

导出引用
夏涛, 吴翟铮, 张小亮, 夏彧飏, 刘海涛, 张仰飞. 基于互感动态识别的波光互补装置水下无线电能传输控制策略研究[J]. 太阳能学报. 2024, 45(12): 667-674 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1223
Xia Tao, Wu Zhaizheng, Zhang Xiaoliang, Xia Yuyang, Liu Haitao, Zhang Yangfei. RESEARCH ON THE CONTROL STRATEGY OF UNDERWATER WIRELESS ENERGY TRANSMISSION OF WAVE-OPTICAL COMPLEMENTARY DEVICE BASED ON MUTUAL SENSING DYNAMIC IDENTIFICATION[J]. Acta Energiae Solaris Sinica. 2024, 45(12): 667-674 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1223
中图分类号: TM619   

参考文献

[1] CARRERAS M, HERNANDEZ J D, VIDAL E, et al.Sparus Ⅱ AUV: a hovering vehicle for seabed inspection[J]. IEEE journal of oceanic engineering, 2018, 43(2): 344-355.
[2] ZHANG B, JI D, LIU S, et al.Autonomous under-water vehicle navigation: a review[J]. Ocean engineering, 2023, 73(1): 1-29.
[3] 蔡彬. 水下自主航行器无线电能传输系统研究[D]. 镇江: 江苏科技大学, 2023.
CAI B.Research on wireless power transmission system of underwater autonomous vehicle[D]. Zhenjiang: Jiangsu University of Science and Technology, 2023.
[4] 王忠达. 自主水下航行器磁耦合式无线充电系统设计[D]. 大连: 大连理工大学, 2022.
WANG Z D.Design of magnetic coupling wireless charging system for autonomous underwater vehicle[D]. Dalian: Dalian University of Technology, 2022.
[5] BYFORD B, WOOD S.Onboard renewable energy charging methods to improve AUV deployment life[C]//OCEANS 2019 MTS/IEEE SEATTLE. Seattle, WA, USA, 2019: 1-10.
[6] BEHROUZIN E, TABESH A, ZAMANI A.A reliable and efficient circuitry for photovoltaic energy harvesting for powering marine instrumentations[C]//IET Conference on Renewable Power Generation (RPG 2011). Edinburgh, UK, 2011: 1-4.
[7] 周逸伦, 张亚群, 盛松伟, 等. 振荡水柱式波浪能供电浮标水动力学性能研究[J]. 太阳能学报, 2023, 44(3): 298-303.
ZHOU Y L, ZHANG Y Q, SHENG S W, et al.Study on hydrodynamic performance of oscillating water column wave energy-powered buoy[J]. Acta energiae solaris sinica, 2023, 44(3): 298-303.
[8] 韦建锋, 盛松伟, 陈敏, 等. 全潜液囊式波浪能俘获系统特性研究[J]. 太阳能学报, 2024, 45(1): 395-401.
WEI J F, SHENG S W, CHEN M, et al.Characterization of fully submerged bag type wave energy capture system[J]. Acta energiae solaris sinica, 2024, 45(1): 395-401.
[9] 刘浩洋. 漂浮式光伏发电系统最大功率追踪技术研究[D]. 太原: 太原理工大学, 2020.
LIU H Y.Research on maximum power tracking technology of floating photovoltaic power generation system[D]. Taiyuan: Taiyuan University of Technology, 2020.
[10] KOJIYA T, SATO F, MATSUKI H, et al.Automatic power supply system to underwater vehicles utilizing non-contacting technology[C]//Oceans '04 MTS/IEEE Techno-Ocean '04. Kobe, 2005: 2341-2345.
[11] KAN T Z, MAI R K, MERCIER P P, et al.Design and analysis of a three-phase wireless charging system for lightweight autonomous underwater vehicles[J]. IEEE transactions on power electronics, 2018, 33(8): 6622-6632.
[12] MOSTAFA A, WANG Y, ZHANG H, et al.An ultra-fast wireless charging system with a hull-compatible coil structure for autonomous underwater vehicles (AUVs)[C]//2022 IEEE Transportation Electrification Conference & Expo (ITEC). Anaheim, CA, USA, 2022: 279-284.
[13] 王海洋, 李德骏, 周杰, 等. 水下非接触电能传输耦合器优化设计[J]. 中国科技论文, 2012, 7(8): 622-626.
WANG H Y, LI D J, ZHOU J, et al.Optimization of underwater contactless power transmission couplers[J]. China sciencepaper, 2012, 7(8): 622-626.
[14] ZHOU J, YAO P Z, CHEN Y Q, et al.Design considerations for a self-latching coupling structure of inductive power transfer for autonomous underwater vehicle[J]. IEEE transactions on industry applications, 2021, 57(1): 580-587.
[15] 文金伟. 水下无线电能传输系统功率控制策略研究[D]. 哈尔滨: 哈尔滨工程大学, 2023.
WEN J W.Research on power control strategy of underwater wireless power transmission system[D]. Harbin: Harbin Engineering University, 2023.
[16] 刘宇鑫, 高飞, 刘鑫, 等. 深海无人航行器双向无线充电系统的涡流损耗分析与效率优化[J]. 电工技术学报, 2024, 39(18): 5599-5609.
LIU Y X, GAO F, LIU X, et al.Analysis of eddy current loss and efficiency optimization for bidirectional underwater wireless power transfer of AUVs[J]. Transactions of China Electrotechnical Society, 2024, 39(18): 5599-5609.
[17] 薛明, 杨庆新, 章鹏程, 等. 无线电能传输技术应用研究现状与关键问题[J]. 电工技术学报, 2021, 36(8): 1547-1568.
XUE M, YANG Q X, ZHANG P C, et al.Application status and key issues of wireless power transmission technology[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1547-1568.
[18] YANG L, LI X M, LIU S, et al.Analysis and design of an LCCC/S-compensated WPT system with constant output characteristics for battery charging applications[J]. IEEE journal of emerging and selected topics in power electronics, 2021, 9(1): 1169-1180.

基金

国家自然科学基金面上项目(41876096); 江苏省自然科学青年基金(BK20201034); 江苏省配电网智能技术与装备协同创新中心(XTCX202002)

PDF(2712 KB)

Accesses

Citation

Detail

段落导航
相关文章

/