基于柱热源模型的同轴套管分段耦合模型研究

王晶晶, 郑建国, 邓军涛, 于永堂, 朱建民, 黄鑫

太阳能学报 ›› 2025, Vol. 46 ›› Issue (11) : 20-28.

PDF(3120 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3120 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (11) : 20-28. DOI: 10.19912/j.0254-0096.tynxb.2024-1224

基于柱热源模型的同轴套管分段耦合模型研究

  • 王晶晶1, 郑建国1,2, 邓军涛2, 于永堂3, 朱建民1, 黄鑫1
作者信息 +

STUDY ON SEGMENTED COUPLED MODEL OF COAXIAL CASING BASED ON COLUMN HEAT SOURCE MODEL

  • Wang Jingjing1, Zheng Jianguo1,2, Deng Juntao2, Yu Yongtang3, Zhu Jianmin1, Huang Xin1
Author information +
文章历史 +

摘要

为有效描述地下埋管换热器系统的传热过程,便于地埋管换热器系统的优化设计。采用分层复合介质的方法和分段迭代计算,建立一种考虑土壤和钻孔传热过程的同轴套管换热器耦合解析模型,并基于试验及数值模拟结果验证模型的合理性。采用模型分析了初始地温分布、温度比对地埋管系统性能的影响。结果表明:忽略变温层的影响将会低估热交换器的换热能力,且对浅层地埋管换热性能的影响程度大于深层。另外,决定热交换量的不是入口流体温度高,而是入口流体温度与初始地温的差值高。

Abstract

To effectively describe the heat transfer process of underground buried pipe heat exchanger systems and facilitate the optimal design of buried pipe heat exchanger systems. A coupled analytical model of coaxial sleeve heat exchanger considering soil and borehole heat transfer processes was established using the method of layered composite medium and segmented iterative calculation. The rationality of the model was verified based on experimental and numerical simulation results. The influence of initial ground temperature distribution and temperature ratio on the performance of buried pipe systems was analyzed using a model. The results indicate that ignoring the influence of the variable temperature layer will underestimate the heat transfer capacity of the heat exchanger, and the impact on the heat transfer performance of shallow buried pipes is greater than that of deep layers. In addition, it was found that the heat exchange rate is not determined by a higher inlet fluid temperature, but by a larger difference between the inlet fluid temperature and the initial ground temperature.

关键词

地热能 / 换热器 / 解析模型 / 分段耦合 / 地温分布 / 温度比

Key words

geothermal energy / heat exchanger / analytical model / segmented coupled model / ground temperature distribution / temperature ratio

引用本文

导出引用
王晶晶, 郑建国, 邓军涛, 于永堂, 朱建民, 黄鑫. 基于柱热源模型的同轴套管分段耦合模型研究[J]. 太阳能学报. 2025, 46(11): 20-28 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1224
Wang Jingjing, Zheng Jianguo, Deng Juntao, Yu Yongtang, Zhu Jianmin, Huang Xin. STUDY ON SEGMENTED COUPLED MODEL OF COAXIAL CASING BASED ON COLUMN HEAT SOURCE MODEL[J]. Acta Energiae Solaris Sinica. 2025, 46(11): 20-28 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1224
中图分类号: TK529   

参考文献

[1] 邓军涛, 王娟娟, 郑建国. 不同管径和埋深地埋管换热器换热性能分析[J]. 太阳能学报, 2021, 42(9): 416-421.
DENG J T, WANG J J, ZHENG J G.Analysis on thermal performance of ground heat exchanger with various diameters and depths[J]. Acta energiae solaris sinica, 2021, 42(9): 416-421.
[2] 马玖辰, 张秋丽, 易飞羽, 等. 复合地热井式深井地埋管换热器典型参数敏感性分析[J]. 太阳能学报, 2021, 42(12): 334-342.
MA J C, ZHANG Q L, YI F Y, et al.Sensitivity analysis of typical parameters of deep borehole buried pipe heat exchanger combined with geothermal wells[J]. Acta energiae solaris sinica, 2021, 42(12): 334-342.
[3] 刘雨, 吴蔚兰, 余晓平. 桩基螺旋埋管强化换热性能数值模拟研究[J]. 重庆大学学报, 2022, 45(S1): 135-140.
LIU Y L, WU W L, YU X P.Numerical simulation study on enhanced heat transfer performance of pile foundation spiral pipe heat exchanger[J]. Journal of Chongqing University, 2022, 45(S1): 135-140.
[4] 李磊. 浅层套管式地埋管换热器传热特性研究[D]. 北京: 煤炭科学研究总院, 2024.
LI L.Study on heat transfer characteristics of shallow borehole casing-shaped buried tubeheat exchanger[D]. Beijing: China Coal Research Institute, 2024.
[5] IIGERSOLL L, PLASS H.Theory of the ground pipe source for the heat pump[J]. Ashrae trans, 1948, 54: 339-348.
[6] CARSLAW H, JAEGER J.Conduction of heat in solids[D]. UK: Oxford university, 1959.
[7] ZENG H Y, DIAO N R, FANG Z H.A finite line-source model for boreholes in geothermal heat exchangers[J]. Heat transfer: Asian research, 2002, 31(7): 558-567.
[8] MAN Y, YANG H X, DIAO N R, et al.A new model and analytical solutions for borehole and pile ground heat exchangers[J]. International journal of heat and mass transfer, 2010, 53(13/14): 2593-2601.
[9] LUO Y Q, GUO H S, MEGGERS F, et al.Deep coaxial borehole heat exchanger: analytical modeling and thermal analysis[J]. Energy, 2019, 185: 1298-1313.
[10] LUO Y Q, YU J H, YAN T, et al.Improved analytical modeling and system performance evaluation of deep coaxial borehole heat exchanger with segmented finite cylinder-source method[J]. Energy and buildings, 2020, 212: 109829.
[11] 黄献文, 姚直书, 薛维培, 等. 基于分段法的同轴套管换热器解析模型研究[J]. 太阳能学报, 2022, 43(4): 95-103.
HUANG X W, YAO Z S, XUE W P, et al.Analytical model of coaxial borehole heat exchanger based on segmentation method[J]. Acta energiae solaris sinica, 2022, 43(4): 95-103.
[12] PAN A Q, MCCARTNEY J S, LU L, et al.A novel analytical multilayer cylindrical heat source model for vertical ground heat exchangers installed in layered ground[J]. Energy, 2020, 200: 117545.
[13] BEIER R A, FOSSA M, MORCHIO S.Models of thermal response tests on deep coaxial borehole heat exchangers through multiple ground layers[J]. Applied thermal engineering, 2021, 184: 116241.
[14] ABDELAZIZ S L, OZUDOGRU T Y, OLGUN C G, et al.Multilayer finite line source model for vertical heat exchangers[J]. Geothermics, 2014, 51: 406-416.
[15] LUO Y Q, CHENG N, XU G Z.Analytical modeling and thermal analysis of deep coaxial borehole heat exchanger with stratified-seepage-segmented finite line source method (S3-FLS)[J]. Energy and buildings, 2022, 257: 111795.
[16] LUO Y Q, YAN T, YU J H.Integrated analytical modeling of transient heat transfer inside and outside U-tube ground heat exchanger: a new angle from composite-medium method[J]. International journal of heat and mass transfer, 2020, 162: 120373.
[17] OLFMAN M Z, WOODBURY A D, BARTLEY J.Effects of depth and material property variations on the ground temperature response to heating by a deep vertical ground heat exchanger in purely conductive media[J]. Geothermics, 2014, 51: 9-30.
[18] LI W X, LI X D, DU R Q, et al.Experimental investigations of the heat load effect on heat transfer of ground heat exchangers in a layered subsurface[J]. Geothermics, 2019, 77: 75-82.
[19] RIVERA J A, BLUM P, BAYER P.Ground energy balance for borehole heat exchangers: vertical fluxes, groundwater and storage[J]. Renewable energy, 2015, 83: 1341-1351.
[20] ZARRELLA A, PASQUIER P.Effect of axial heat transfer and atmospheric conditions on the energy performance of GSHP systems: a simulation-based analysis[J]. Applied thermal engineering, 2015, 78: 591-604.
[21] BIDARMAGHZ A, NARSILIO G A, JOHNSTON I W, et al.The importance of surface air temperature fluctuations on long-term performance of vertical ground heat exchangers[J]. Geomechanics for energy and the environment, 2016, 6: 35-44.
[22] PAN A Q, LU L, TIAN Y.A new analytical model for short vertical ground heat exchangers with Neumann and Robin boundary conditions on ground surface[J]. International journal of thermal sciences, 2020, 152: 106326.
[23] MA L, ZHAO Y Z, YIN H M, et al.A coupled heat transfer model of medium-depth downhole coaxial heat exchanger based on the piecewise analytical solution[J]. Energy conversion and management, 2020, 204: 112308.
[24] LI M, LAI A C K. Heat-source solutions to heat conduction in anisotropic media with application to pile and borehole ground heat exchangers[J]. Applied energy, 2012, 96: 451-458.
[25] BEIER R A, ACUÑA J, MOGENSEN P, et al. Borehole resistance and vertical temperature profiles in coaxial borehole heat exchangers[J]. Applied energy, 2013, 102: 665-675.
[26] BEIER R A.Thermal response tests on deep borehole heat exchangers with geothermal gradient[J]. Applied thermal engineering, 2020, 178: 115447.
[27] BEIER R A, ACUÑA J, MOGENSEN P, et al. Transient heat transfer in a coaxial borehole heat exchanger[J]. Geothermics, 2014, 51: 470-482.
[28] LI C, GUAN Y L, LIU J H, et al.Heat transfer performance of a deep ground heat exchanger for building heating in long-term service[J]. Renewable energy, 2020, 166: 20-34.
[29] LI C, JIANG C, GUAN Y L, et al.Development and applicability of heat transfer analytical model for coaxial-type deep-buried pipes[J]. Energy, 2022, 255: 124533.

基金

国家自然科学基金(42277151); 陕西省科技统筹创新工程计划项目(2012KTCQ03-01); 陕西省秦创原“科学家+工程师”队伍建设项目(2022KXJ-086)

PDF(3120 KB)

Accesses

Citation

Detail

段落导航
相关文章

/