基于波浪耗散型海塘前沿两次外围台风过程的波面测量,测量数据反映了超浅海极缓坡条件下潮汐过程的波浪统计特征。测点处于破波区,在潮滩漫水到高潮过程中最大波高与水深比可达0.61,存在破碎后的波浪重组,均方根波高与水深比相对较低,限于0.3以内,受波浪破碎的限制,两次台风过程中最大波高与平均波高的比值统计平均分别为1.46和1.47。瑞丽分布和格鲁霍夫斯基分布分别能较好拟合水深2 m以下和3 m以上的波高分布,对于水深介于2~3 m的潮波过程两类分布拟合精度均略差。实测波高的偏度大多数为正偏,峰度基本上是负值,波高的分布比瑞丽分布更接近对称分布,比瑞丽分布和格鲁霍夫斯基分布更平坦,分布域更广,峰度系数与偏度系数具有良好的相关性。谱分布表明,“卡努”台风期间涌浪集中的低频波区段占主导地位,风波集中在高频区段,存在次生的更低频波动,能量较弱;“海葵”台风期间,两处低频波区段占主导作用,风波集中在高频区段,整体较弱。
Abstract
Field measurements are made in front of the wave-dissipative seawall during two typhoonevents to investigate wave characteristics under varying tidal levels in ultra-shallow sea environments with highly gentle slopes. During tidal cycles, the maximum wave height-to-water depth ratio reaches 0.61. Post-breaking wave phenomena exhibit wave recombination. The root mean square (RMS) wave height-to-water depth ratio is relatively low, with a maximum value of approximately 0.3. Due to wave breaking, the ratio of the maximum wave height to the average wave height is found to be 1.46 and 1.47, respectively, during the two typhoon processes. The Rayleigh distribution is found to adequately fit the wave height distribution in water depths below 2 m, In constrast, the Glukhovskiy distribution provides a better fit for wave height distribution in water depths above 3 m. For water depths between 2 and 3 meters, the fitting accuracy of both distributions is slightly lower. For the measured wave, the skewness of the height distribution is primarily positive, while the kurtosis is negative. Its wave height distributionexhibits greater symmetry compared to the Rayleigh distribution, showing a flatter pattern and a wider domain than both the Rayleigh distribution and the Grukhovsky distribution . Moreover, a strong correlation is observed between the kurtosis and skewness coefficient of the measured wave. Spectral analysis reveals during Typhoon Khanun, lower-frequency surges are predominant, accompanied by a secondary low-frequency wave with weak energy. In contrast, during Typhoon Haikui, two primary low-frequency wavecomponents are dominant, while wind waves, which are relatively weak, are concentrated in the high-frequency range.
关键词
波浪 /
海滩 /
海上光伏 /
波形分析 /
破波 /
分布函数 /
野外测量
Key words
waves /
tidal flats /
floating PV /
waveform analysis /
wave breaking /
distribution functions /
field measurements
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 钱正英. 浙江沿海及海岛综合开发战略研究-综合卷: 浙江沿海及海岛地区综合开发战略研究[M]. 杭州: 浙江人民出版社, 2012.
QIAN Z Y.Study on comprehensive development strategy of Zhejiang coastal and island areas-comprehensive volume: study on comprehensive development strategy of Zhejiang coastal and island areas[M]. Hangzhou: Zhejiang People’s Publishing House, 2012.
[2] 黄世昌, 赵鑫, 娄海峰, 等. 苍南火电厂水文分析报告[R]. 杭州: 浙江省水利河口研究院, 2008.
HUANG S C, ZHAO X, LOU H F, et al.Hydrological analysis report of Cangnan Thermal Power Plant[R]. Hangzhou: Zhejiang Institute of Hydraulics & Estuary, 2008.
[3] 黄世昌, 姚文伟. 象山大岙和下沙沙滩修复研究[R]. 杭州: 浙江省水利河口研究院, 2011.
HUANG S C, YAO W W.Restoration research of Daao and Xiasha Beach in Xiangshan County[R]. Hangzhou: Zhejiang Institute of Hydraulics & Estuary, 2011.
[4] 张沈阳, 陆波, 何文亮, 等. 浙江象山县海洋水文专用站观测技术报告[R]. 杭州: 浙江省水利河口研究院, 2016.
ZHANG S Y, LU B, HE W L, et al.Report on observation technology of marine hydrological station in Xiangshan County, Zhejiang Province[R]. Hangzhou: Zhejiang Institute of Hydraulics & Estuary, 2016.
[5] 陆波, 张沈阳, 何文亮, 等. 浙江苍南县海洋水文专用站观测技术报告[R]. 杭州: 浙江省水利河口研究院, 2012.
LU B, ZHANG S Y, HE W L, et al.Report on observation technology of marine hydrological station in Cangnan County, Zhejiang Province[R]. Hangzhou: Zhejiang Institute of Hydraulics & Estuary, 2012.
[6] 周昳鸣, 杨立华, 郇彩云, 等. 浙江苍南近岸海域实测波浪特征分析[J]. 海洋学研究, 2023, 41(3): 43-55.
ZHOU Y M, YANG L H, HUAN C Y, et al.Analysis of measured wave characteristics in the coastal waters of Cangnan, Zhejiang Province[J]. Journal of marine sciences, 2023, 41(3): 43-55.
[7] 杨斌, 施伟勇, 叶钦, 等. 舟山岛东北部沿海实测台风浪特性[J]. 水科学进展, 2017, 28(1): 106-115.
YANG B, SHI W Y, YE Q, et al.Characteristics of waves in coastal waters of northeast Zhoushan Island during typhoons[J]. Advances in water science, 2017, 28(1): 106-115.
[8] HWANG S, KWAK K S, LEE J L.Spectral analysis of near-breaking wave data observed in macro-tidal environment by zero up-crossing transform method[J]. Ocean engineering, 2023, 267: 113095.
[9] WENNEKER I, SPELT B, PETERS H, et al.Overview of 20 years of field measurements in the coastal zone and at the Petten sea dike in the Netherlands[J]. Coastal engineering, 2016, 109: 96-113.
[10] STRINGARI C E, POWER H E.The fraction of broken waves in natural surf zones[J]. Journal of geophysical research: oceans, 2019, 124(12): 9114-9140.
[11] BATTJES J A, GROENENDIJK H W.Wave height distributions on shallow foreshores[J]. Coastal engineering, 2000, 40(3): 161-182.
[12] VLEDDER G V, RUESSINK G, RIJSDORP D.Individual wave height distributions in the coastal zone: measurements and simulations and the effect of directional spreading[C]//The 7th International Conference on Coastal Dynamics. Arcachon, France, 2013: 1799-1810.
[13] 崔明慧, 涂俊彪, 孟令鹏, 等. 长江口南汇潮滩的波浪特征及其影响因素[J]. 海洋学研究, 2023, 41(2): 28-44.
CUI M H, TU J B, MENG L T, et al.Wave characteristics and their influencing factorson Nanhui tidal flats in the Changjiang Estuary[J]. Journal of marine science, 2023, 41(2): 28-44.
[14] 芦军, 范代读, 涂俊彪, 等. 潮滩上应用ADV进行波浪观测与特征参数计算[J]. 海洋通报, 2016, 35(5): 523-531.
LU J, FAN D D, TU J B, et al.Application of ADV in the tidal flat to observe wave processes and calculate their characteristic parameters[J]. Marine science bulletin, 2016, 35(5): 523-531.
[15] 陈燕萍, 杨世伦, 史本伟, 等. 潮滩上波高的时空变化及其影响因素: 以长江三角洲海岸为例[J]. 海洋科学进展, 2012, 30(3): 317-327.
CHEN Y P, YANG S L, SHI B W, et al.Temporal and spatial variations in wave height over intertidal mudflats and the influencing factors: a case study from the Yangtze River Delta[J]. Advances in marine science, 2012, 30(3): 317-327.
[16] LONGUET-HIGGINS M S. On the statistical distribution of the heights of seawaves[J]. Journal of marine research, 1952, 11(3): 245-266.
[17] GODA Y.Random seasand design of maritime structures[M]. Singapore: World Scientific, 2000.
[18] SANIL KUMAR V, SINGH J, PEDNEKAR P, et al.Waves in the nearshore waters of northern Arabian Sea during the summer monsoon[J]. Ocean engineering, 2011, 38(2/3): 382-388.
[19] 杨正己, 贺辉华, 高正荣. 赤湾港波浪的统计分布及谱分析[J]. 水运工程, 1986(12): 5-10, 4.
YANG Z J, HE H H, GAO Z R.Statistical distribution and spectral analysis of waves in Chiwan Port[J]. Port & waterway engineering, 1986(12): 5-10, 4.
[20] 高晨晨, 周谷城, 王侃睿. 响水近岸海域波浪特性研究[J]. 海洋学报, 2019, 41(5): 23-34.
GAO C C, ZHOU G C, WANG K R.Study on wave characteristics in the nearshore waters of Xiangshui[J]. Haiyang xuebao, 2019, 41(5): 23-34.
[21] GODA Y.A review on statistical interpretation of wave data[R]. Report of the Port & Harbour Research Institute, 1979, 8: 5-32.
[22] YANG B, FENG W B, ZHANG Y.Wave characteristics at the south part of the radial sand ridges of the Southern Yellow Sea[J]. China ocean engineering, 2014, 28(3): 317-330.
[23] LI Y, ZHANG C, SONG J C, et al.Tide-modulated wave characteristics and breaking regimes in the intertidal zone of a dissipative beach[J]. Ocean engineering, 2022, 266: 113055.
[24] THORNTON E B, GUZA R T.Transformation of wave height distribution[J]. Journal of geophysical research: oceans, 1983, 88(C10): 5925-5938.
[25] 邱大洪. 波浪理论及其在工程中的应用[M]. 北京: 高等教育出版社, 1985.
QIU D H.Wave theory and its application in engineering[M]. Beijing: Higher Education Press, 1985.
[26] RUESSINK B G, RAMAEKERS G, VAN RIJN L C. On the parameterization of the free-stream non-linear wave orbital motion in nearshore morphodynamic models[J]. Coastal engineering, 2012, 65: 56-63.
基金
浙江省自然科学基金(LZJWZ23E090004); 水利部重大科技项目(SKS-2022024); 浙江省水利河口研究院(浙江省海洋规划设计研究院)院长科学基金(ZIHE21Z002)