双馈风力发电低电压穿越微分平坦控制

段炼, 王洪希, 曹生志, 王蔼祥, 禹天凤

太阳能学报 ›› 2025, Vol. 46 ›› Issue (11) : 676-684.

PDF(10223 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(10223 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (11) : 676-684. DOI: 10.19912/j.0254-0096.tynxb.2024-1238

双馈风力发电低电压穿越微分平坦控制

  • 段炼, 王洪希, 曹生志, 王蔼祥, 禹天凤
作者信息 +

RESEARCH ON LOW-VOLTAGE RIDE-THROUGH DIFFERENTIAL-FLATNESS CONTROL FOR DOUBLY-FED INDUCTION GENERATORS

  • Duan Lian, Wang Hongxi, Cao Shengzhi, Wang Aixiang, Yu Tianfeng
Author information +
文章历史 +

摘要

双馈风力发电机(DFIG)低电压穿越(LVRT)期间对网侧和转子侧PWM变流器响应速度和鲁棒性要求较高,为解决传统PI控制策略在LVRT条件下响应慢、鲁棒性不佳的问题,提出基于微分平坦理论的网侧与转子侧新型控制策略。首先阐述DFIG的网侧和转子侧在d-q轴上的数学模型,依照微分平坦理论证明系统平坦性;并设计含有前馈参考轨迹和误差反馈补偿的网侧与转子侧电流控制器;最后,在Matlab/Simulink搭建仿真模型。仿真结果表明,该控制策略提高了DFIG的穿越能力,且响应速度快,鲁棒性强。验证了微分平坦理论应用于DFIG控制的可行性与有效性。

Abstract

Doubly-fed induction generator (DFIG) low voltage ride-through (LVRT) requires high response speed and robustness for grid side and rotor side PWM converters. In order to solve the problem of slow response and poor robustness of traditional PI control strategy under the condition of low voltage ride-through, a novel control strategy based on differential flatness theory is proposed for grid side and rotor side. In this paper, the mathematical model of the grid side and rotor side of the DFIG on the d-q axis is described, and the flatness of the system is proved according to the differential flatness theory. Secondly, a two-sided differential flat current controller with feedforward reference trajectory and error feedback compensation is designed. Finally, the system simulation model is built in MATLAB /Simulink. The simulation results show that the application of this control strategy improves the ride-through capablity of DFIG during the grid low voltage period, and the response speed is fast and the robustness is strong. The feasibility and effectiveness of applying differential flatness theory to DFIG are verified.

关键词

双馈风力发电机 / 低电压穿越 / 微分平坦 / 鲁棒性

Key words

doubly-fed induction generator / low voltage ride-through / differential flatness / robustness

引用本文

导出引用
段炼, 王洪希, 曹生志, 王蔼祥, 禹天凤. 双馈风力发电低电压穿越微分平坦控制[J]. 太阳能学报. 2025, 46(11): 676-684 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1238
Duan Lian, Wang Hongxi, Cao Shengzhi, Wang Aixiang, Yu Tianfeng. RESEARCH ON LOW-VOLTAGE RIDE-THROUGH DIFFERENTIAL-FLATNESS CONTROL FOR DOUBLY-FED INDUCTION GENERATORS[J]. Acta Energiae Solaris Sinica. 2025, 46(11): 676-684 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1238
中图分类号: TM614   

参考文献

[1] 李晖, 刘栋, 姚丹阳. 面向碳达峰碳中和目标的我国电力系统发展研判[J]. 中国电机工程学报, 2021, 41(18): 6245-6259.
LI H, LIU D, YAO D Y.Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality[J]. Proceedings of the CSEE, 2021, 41(18): 6245-6259.
[2] 聂鹏程, 吴文辉. 电网电压对称跌落时无刷双馈风力发电机的状态反馈控制[J]. 电工技术学报, 2023, 38(17): 4610-4620.
NIE P C, WU W H.State feedback control of brushless doubly-fed wind turbine under symmetrical voltage drop[J]. Transactions of China Electrotechnical Society, 2023, 38(17): 4610-4620.
[3] 花赟玥, 吴琛, 黄伟. 考虑风电低电压穿越过程的频率最低点量化及其提升方法[J]. 电力系统自动化, 2023, 47(1): 126-134.
HUA Y Y, WU C, HUANG W.Quantification and enhancement method for frequency nadir considering low voltage ride-through process of wind power[J]. Automation of electric power systems, 2023, 47(1): 126-134.
[4] 凌禹. 改进的双馈风电机组故障穿越控制策略研究[J]. 太阳能学报, 2022, 43(12): 312-319.
LING Y.Research on improved fault traverse control strategy for doubly-fed wind turbine[J]. Acta energiae solaris sinica, 2022, 43(12): 312-319.
[5] 谈竹奎, 文贤馗, 杨涛, 等. 面向新型电力系统的双馈风力发电机并网控制策略研究[J]. 电力系统保护与控制, 2023, 51(3): 181-187.
TAN Z K, WEN X K, YANG T, et al.A grid-connected control strategy for doubly-fed wind turbines for new power systems[J]. Power system protection and control, 2023, 51(3): 181-187.
[6] 李啸骢,罗雪丽,侯立亮,等. 基于分数阶LCL滤波器的风力发电网侧控制研究[J]. 太阳能学报, 2022, 43(12): 383-391.
LI X C, LUO X L, HOU L L, et al.Wind power grid side control based on fractional order LCL filter[J]. Acta energiae solaris sinica, 2022, 43(12): 383-391.
[7] 李谟发, 张志文, 练红海, 等. 含双馈风电电力系统的采样负荷频率控制[J]. 电力系统保护与控制, 2023, 51(2): 77-88.
LI M F, ZHANG Z W, LIAN H H, et al.Sampling load frequency control of power systems with doubly-fed wind power[J]. Power system protection and control, 2023, 51(2): 77-88.
[8] 方欣, 姚骏, 刘育明, 等. 双馈风电系统低压穿越期间的参数辨识方法研究[J]. 电工电能新技术, 2024,43(2): 1-11.
FANG X, YAO J, LIU Y M, et al.Research on parameter identification method of doubly-fed wind power system during low voltage crossing[J]. Advanced technology of electrical engineering and energy, 2024,43(2): 1-11.
[9] YAN R, SAHA T K, BAI F, et al.The anatomy of the 2016 south Australia blackout: a catastrophic event in a high renewable network[J]. IEEE transactions on power systems, 2018, 33(5): 5374-5388.
[10] SATI T E, AZZOUZ M A, SHAABAN M.Optimal protection coordination of islanded microgrids utilizing an adaptive virtual impedance fault current limiter[J]. IEEE transactions on industry applications, 2023, 57(3): 2866-2876.
[11] 张钦智, 王宾, 李琰, 等. 风电场经柔性直流输电系统故障穿越协调控制研究[J]. 电力系统保护与控制, 2020, 48(10): 131-138.
ZHANG Q Z, WANG B, LI Y, et al.Research on fault crossing coordination control of a wind farm via a flexible direct current[J]. Power system protection and control, 2020, 48(10): 131-138.
[12] 王鑫达, 张澳, 李少林, 等. 电压源型双馈风电机组低压穿越控制策略[J].电机与控制学报. 2023, 27(3): 21-29.
WANG X D, ZHANG A, LI S L, et al.Low voltage traverse control strategy for doubly-fed wind turbine[J]. Electric machines and control, 2023, 27(3): 21-29.
[13] 王顺江, 李志伟, 王洪哲, 等. 双馈异步风机非线性低电压穿越控制策略研究[J]. 可再生能源, 2022, 40(9): 1257-1262.
WANG S J, LI Z W, WANG H Z, et al.Research on nonlinear low voltage crossing control strategy of doubly-fed induction fan[J]. Renewable energy resources, 2022, 40(9): 1257-1262.
[14] 刘其辉, 吴勇, 闫佳颖, 等. 考虑相位跳变的双馈风电机组低电压穿越特性分析与暂态过电压抑制[J]. 太阳能学报, 2024, 45(5): 86-94.
LIU Q H, WU Y, YAN J Y, et al.Analysis of low voltage crossing characteristics and transient overvoltage suppression of doubly-fed wind turbines considering phase hopping[J]. Acta energiae solaris sinica, 2024, 45(5): 86-94.
[15] SENAPATI M K, PRADHAN C, NAYAK P K, et al.Modified demagneti- sation control strategy for low-voltage ride-through enhancement in DFIG-based wind systems[J]. IET renewable power generation, 2020, 14(17): 3487-3499.
[16] 蒋东荣, 莫若男, 杨超, 等. 虚拟同步控制下双馈风电机组传动链动态特性分析[J]. 太阳能学报, 2023, 44(8): 412-419.
JIANG D R, MO R N, YANG C, et al.Dynamic characteristics analysis of double-fed wind turbine drive chain under virtual synchronous control[J]. Acta energiae solaris sinica, 2023, 44(8): 412-419.
[17] FLIESS M,LÉVINE J, MARTIN P, et al. Flatness and defect of non-linear systems: introductory theory and examples[J]. International journal of control, 1995, 61(6): 1327-1361.
[18] 杨彦霞, 李少林, 王伟胜, 等. 考虑运行经济性与安全性的风电场功率模型预测优化控制[J]. 太阳能学报, 2024, 45(10): 521-528.
YANG Y X, LI S L, WANG W S, et al.Power model prediction and optimization control of wind farm considering operation economy and safety[J]. Acta energiae solaris sinica, 2024, 45(10): 521-528.
[19] 程启明, 岳秉言, 程尹曼, 等. Y型模块化多电平换流器电流的微分平坦控制策略研究[J]. 高电压技术, 2023, 49(8): 3467-3480.
CHENG Q M, YUE B Y, CHENG Y M, et al.Research on differential flat current control strategy of Y-type modular multilevel converter[J]. High voltage engineering, 2023, 49(8): 3467-3480.
[20] 江畅, 程启明, 马信乔, 等. 不平衡电网电压下基于模块化多电平变流器的统一电能质量调节器的微分平坦控制[J]. 电工技术学报, 2021, 36(16): 3410-3421.
JIANG C, CHENG Q M, MA X Q, et al.Differential flat control of unified power quality regulator based on modular multilevel converter under unbalanced grid voltage[J]. Transactions of China Electrotechnical Society, 2021, 36(16): 3410-3421.

基金

吉林省教育厅科学技术研究项目(JJKH20230063KJ); 北华大学研究生创新计划项目(2023049)

PDF(10223 KB)

Accesses

Citation

Detail

段落导航
相关文章

/