中国清洁能源基地多时间尺度互补网络及鲁棒性研究

李昕媛, 任康, 郑霞忠

太阳能学报 ›› 2025, Vol. 46 ›› Issue (7) : 307-317.

PDF(1816 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1816 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (7) : 307-317. DOI: 10.19912/j.0254-0096.tynxb.2024-1241
第二十七届中国科协年会学术论文

中国清洁能源基地多时间尺度互补网络及鲁棒性研究

  • 李昕媛1,2, 任康1,2, 郑霞忠1,2
作者信息 +

STUDY ON MULTI-TIME SCALE COMPLEMENTARY NETWORKS AND ROBUSTNESS IN CHINA’S CLEAN ENERGY BASES

  • Li Xinyuan1,2, Ren Kang1,2, Zheng Xiazhong1,2
Author information +
文章历史 +

摘要

以中国九大清洁能源基地为研究对象,分析新能源基地的装机和出力特征,构建清洁能源基地多时间尺度新能源出力的互补网络模型,研究互补网络结构的鲁棒性及其在清洁能源协同发展中的关键作用,揭示清洁能源基地在多时间尺度上的互补机制。研究结果表明,不同时间尺度上的新能源出力及互补网络存在明显差异,以月为时间尺度的互补网络平均聚类系数为0.74,显示出该网络具有较高的聚类特性;新疆清洁能源基地是日尺度网络中最重要的节点,而黄河几字弯清洁能源基地是年内和年际尺度网络中最重要的节点;在日内、年内和年际尺度下,松辽清洁能源基地、黄河几字弯清洁能源基地、黄河上游清洁能源基地对网络鲁棒性影响较大。

Abstract

This study focuses on China’s nine major clean energy bases, analyzing the installed capacities and output characteristics of the bases. We constructed a complementary network model for clean energy output at multiple time scales and studied the robustness of the complementary network and its key role in the coordinated development of clean energy. Our findings reveal the complementary mechanisms among clean energy bases across different time scales. The results indicate that there are significant differences in renewable energy outputs and complementary networks across different time scales. The average clustering coefficient of the complementary network at the monthly time scale is 0.74, indicating a high clustering degree. The Xinjiang clean energy base is the most important node in the daily-scale network, while the Yellow River Bend clean energy base plays a crucial role in the annual and interannual-scale networks. Additionally, the Songliao, Yellow River Bend, and Yellow River upstream clean energy base have a significant impact on network robustness at the intraday, annual, and interannual scales.

关键词

清洁能源 / 电力系统 / 电网稳定性 / 混合电力系统 / 多时间尺度优化 / 互补性分析

Key words

clean energy / electric power systems / power system stability / hybrid power systems / multi-time scale optimization / complementary analysis

引用本文

导出引用
李昕媛, 任康, 郑霞忠. 中国清洁能源基地多时间尺度互补网络及鲁棒性研究[J]. 太阳能学报. 2025, 46(7): 307-317 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1241
Li Xinyuan, Ren Kang, Zheng Xiazhong. STUDY ON MULTI-TIME SCALE COMPLEMENTARY NETWORKS AND ROBUSTNESS IN CHINA’S CLEAN ENERGY BASES[J]. Acta Energiae Solaris Sinica. 2025, 46(7): 307-317 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1241
中图分类号: TM73   

参考文献

[1] GUO Y, MING B, HUANG Q, et al.Risk-averse day-ahead generation scheduling of hydro-wind-photovoltaic complementary systems considering the steady requirement of power delivery[J]. Applied energy, 2022, 309: 118467.
[2] 沈晓英. 构建现代能源体系,统筹推进碳达峰碳中和——“中国发展论坛·2022”专家观点综述[J].中国发展, 2022, 22(6): 57-61.
SHEN X Y. Build a modern energy system and coordinate efforts to achieve carbon peak and carbon neutrality: an overview of expert views of China Development Forum2022[J]. China development, 22(6): 57-61.
[3] 王嘉乐, 郭苏, 何意, 等. 基于灵活储氢和蓄电池联合储能的混合可再生能源系统规划运行协同优化[J]. 太阳能学报, 2024, 45(7): 41-49.
WANG J L, GUO S, HE Y, et al.Multi stage planning and operation optimization of hybrid renewable energy systems with flexible hydrogen-battery stroage[J]. Acta energiae solaris sinica, 2024, 45(7): 41-49.
[4] 陈述, 陈琼, 任康, 等. 考虑新能源消纳的黄河上游水库群生态调度研究[J]. 水资源保护, 2024, 40(3): 20-27.
CHEN S, CHEN Q, REN K, et al.Considering the new energy accommodation in the ecological operation of the Yellow river upstream reservoirs[J]. Water resources protection, 2024, 40(3): 20-27.
[5] WANG J X, CHEN L D, TAN Z F, et al.Inherent spatiotemporal uncertainty of renewable power in China[J]. Nature communications, 2023, 14: 5379.
[6] 王佳惠, 牛玉广, 陈玥, 等. 计及火电深度调峰的高比例可再生能源电力系统日前优化调度研究[J]. 太阳能学报, 2023, 44(1): 493-499.
WANG J H, NIU Y G, CHEN Y, et al.Research on day-ahead optimal dispatching of high-proportion renewable energy power system considering deep peak load regulation of thermal power[J]. Acta energiae solaris sinica, 2023, 44(1): 493-499.
[7] 李杨, 孙斌, 吴峰, 等. 考虑动态频率约束的多能源电力系统日前-日内优化调度[J]. 太阳能学报, 2024, 45(2): 406-415.
LI Y, SUN B, WU F, et al.Day-ahead and intra-day optimal scheduling of multi-energy power systems considering dynamic frequency constraints[J]. Acta energiae solaris sinica, 2024, 45(2): 406-415.
[8] 卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9): 171-191.
ZHUO Z Y, ZHANG N, XIE X R, et al.Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of electric power systems, 2021, 45(9): 171-191.
[9] 张国斌, 陈玥, 张佳辉, 等. 风-光-水-火-抽蓄联合发电系统日前优化调度研究[J]. 太阳能学报, 2020, 41(8): 79-85.
ZHANG G B, CHEN Y, ZHANG J H, et al.Research on optimization of day-ahead dispatching of wind power-photovoltaic-hydropower-thermal power-pumped storage combined power generation system[J]. Acta energiae solaris sinica, 2020, 41(8): 79-85.
[10] XU L J, WANG Z W, LIU Y F.The spatial and temporal variation features of wind-Sun complementarity in China[J]. Energy conversion and management, 2017, 154: 138-148.
[11] 舒印彪, 张智刚, 郭剑波, 等. 新能源消纳关键因素分析及解决措施研究[J]. 中国电机工程学报, 2017, 37(1): 1-9.
SHU Y B, ZHANG Z G, GUO J B, et al.Study on key factors and solution of renewable energy accommodation[J]. Proceedings of the CSEE, 2017, 37(1): 1-9.
[12] WANG Z N, FANG G H, WEN X, et al.Coordinated operation of conventional hydropower plants as hybrid pumped storage hydropower with wind and photovoltaic plants[J]. Energy conversion and management, 2023, 277: 116654.
[13] 成驰, 许杨, 杨宏青. 并网风光互补资源评价与系统容量优化配置[J]. 水电能源科学, 2014, 32(6): 193-196, 206.
CHENG C, XU Y, YANG H Q.Resources evaluation of grid hybrid wind/PV power complementary and optimization allocation of system capacity[J]. Water resources and power, 2014, 32(6): 193-196, 206.
[14] 黎博, 陈民铀, 钟海旺, 等. 高比例可再生能源新型电力系统长期规划综述[J]. 中国电机工程学报, 2023, 43(2): 555-581.
LI B, CHEN M Y, ZHONG H W, et al.A review of long-term planning of new power systems with large share of renewable energy[J]. Proceedings of the CSEE, 2023, 43(2): 555-581.
[15] REN G R, WAN J, LIU J F, et al.Spatial and temporal assessments of complementarity for renewable energy resources in China[J]. Energy, 2019, 177: 262-275.
[16] 刘怡, 肖立业, WANG Haifeng, 等. 中国广域范围内大规模太阳能和风能各时间尺度下的时空互补特性研究[J]. 中国电机工程学报, 2013, 33(25): 20-26, 6.
LIU Y, XIAO L Y, WANG H F, et al.Temporospatial complementarities between China’s wide-area wind and solar energy at different time scales[J]. Proceedings of the CSEE, 2013, 33(25): 20-26, 6.
[17] 明波, 李研, 刘攀, 等. 嵌套短期弃电风险的水光互补中长期优化调度研究[J]. 水利学报, 2021, 52(6): 712-722.
MING B, LI Y, LIU P, et al.Long-term optimal operation of hydro-solar hybrid energy systems nested with short-term energy curtailment risk[J]. Journal of hydraulic engineering, 2021, 52(6): 712-722.
[18] LIU C R, WANG H Q, WANG Z Y, et al.Research on life cycle low carbon optimization method of multi-energy complementary distributed energy system: a review[J]. Journal of cleaner production, 2022, 336: 130380.
[19] VALLEJO-DÍAZ A, HERRERA-MOYA I, FERNÁNDEZ-BONILLA A, et al. Wind energy potential assessment of selected locations at two major cities in the Dominican Republic, toward energy matrix decarbonization, with resilience approach[J]. Thermal science and engineering progress, 2022, 32: 101313.
[20] 安源, 郑申印, 苏瑞, 等. 风光水储多能互补发电系统双层优化研究[J]. 太阳能学报, 2023, 44(12): 510-517.
AN Y, ZHENG S Y, SU R, et al.Research on two-layer optimization of wind-solar-water-storage multi energy complementary power generation system[J]. Acta energiae solaris sinica, 2023, 44(12): 510-517.
[21] WANGDEE W, BILLINTON R.Probing the intermittent energy resource contributions from generation adequacy and security perspectives[J]. IEEE transactions on power systems, 2012, 27(4): 2306-2313.
[22] 刘显茁, 王皓怀, 邓韦斯, 等. 考虑不同时间尺度下的新能源跨区域消纳策略[J]. 南方电网技术, 2023, 17(2): 37-46, 56.
LIU X Z, WANG H H, DENG W S, et al.Cross-regional new energy consumption strategy considering different time scales[J]. Southern power system technology, 2023, 17(2): 37-46, 56.
[23] TONG D, FARNHAM D J, DUAN L, et al.Geophysical constraints on the reliability of solar and wind power worldwide[J]. Nature communications, 2021, 12: 6146.
[24] 任国瑞. 中国广域范围风能和太阳能时空特性及互补性研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
REN G R.Research on temporal-spatial characteristics and complementarity of wind and solar energy in China with wide areas[D]. Harbin: Harbin Institute of Technology, 2020.
[25] GUEZGOUZ M, JURASZ J, CHOUAI M, et al.Assessment of solar and wind energy complementarity in Algeria[J]. Energy conversion and management, 2021, 238: 114170.
[26] JURASZ J, CANALES F A, KIES A, et al.A review on the complementarity of renewable energy sources: concept, metrics, application and future research directions[J]. Solar energy, 2020, 195: 703-724.
[27] GB 50797—2012, 光伏发电站设计规范[S].
GB 50797—2012, Code for design of photovoltaic power station[S].
[28] GB 51096—2015, 风力发电场设计规范[S].
GB 51096—2015, Code for design of wind farm[S].
[29] GUO Y, MING B, HUANG Q, et al.Variation-based complementarity assessment between wind and solar resources in China[J]. Energy conversion and management, 2023, 278: 116726.
[30] 李洪美, 罗建裕, 万秋兰. 含间歇性电源的发电资源互补优化研究[J]. 电力系统保护与控制, 2013, 41(9): 34-39.
LI H M, LUO J Y, WAN Q L.Manual complementariness optimization of electrical source involving intermittent power[J]. Power system protection and control, 2013, 41(9): 34-39.
[31] 田露, 明波, 张玮, 等. 金沙江下游水风光资源多时间尺度互补性分析[J]. 水力发电学报, 2023, 42(10): 40-49.
TIAN L, MING B, ZHANG W, et al.Multi-time scale complementarity analysis of hydropower, wind power and photoelectric resources in lower reaches of Jinsha River[J]. Journal of hydroelectric engineering, 2023, 42(10): 40-49.
[32] 叶林, 屈晓旭, 么艳香, 等. 风光水多能互补发电系统日内时间尺度运行特性分析[J]. 电力系统自动化, 2018, 42(4): 158-164.
YE L, QU X X, YAO Y X, et al.Analysis on intraday operation characteristics of hybrid wind-solar-hydro power generation system[J]. Automation of electric power systems, 2018, 42(4): 158-164.
[33] WANG X R, KOÇ Y, DERRIBLE S, et al.Multi-criteria robustness analysis of metro networks[J]. Physica A: statistical mechanics and its applications, 2017, 474: 19-31.

基金

国家自然科学基金(52309025)

PDF(1816 KB)

Accesses

Citation

Detail

段落导航
相关文章

/