基于代理模型的风电机组塔架载荷在线识别研究

牟哲岳,王瑞良,章培成,陈前,范增辉

太阳能学报 ›› 2025, Vol. 46 ›› Issue (11) : 685-691.

PDF(21365 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(21365 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (11) : 685-691. DOI: 10.19912/j.0254-0096.tynxb.2024-1247

基于代理模型的风电机组塔架载荷在线识别研究

  • 牟哲岳1,2,王瑞良1,2,章培成1,2,陈前1,2,范增辉1,2
作者信息 +

STUDY ON ON-LINE LOAD IDENTIFICATION FOR TOWER OF WIND TURBINE BASED ON SURROGATE MODEL

  • Mou Zheyue1,2, Wang Ruiliang1,2, Zhang Peicheng1,2, Chen Qian1,2, Fan Zenghui1,2
Author information +
文章历史 +

摘要

摘 要:基于风电机组载荷传递机制推导塔架载荷来源,利用Bladed软件验证塔架和机舱载荷计算公式正确性,发现风轮载荷和机舱加速度是塔架俯仰力矩与侧倾力矩载荷主要成分来源,结合Person系数评价机舱位移、倾角、发电机功率等风轮载荷表征量与塔架力矩载荷之间的高度相关性。以塔底载荷为研究对象,基于多元线性回归算法,构建以风电机组易测动力学参量为输入的塔底载荷代理模型,实时识别得到塔底合力矩载荷,通过大型风电机组仿真载荷数据测试代理模型的有效性,结果表明塔底极限载荷、等效疲劳载荷识别结果与仿真结果相对误差控制在6%以内,在此基础上提出一种风电机组塔架载荷在线识别与管理系统。

Abstract

The tower load source is derived based on the load tranfer mechanicsm of wind turbine, This paper derives the sour tower load based on the load transfer mechanism of wind turbine, and the calculation formulas for tower and nacelle loads are validated using Bladed software. It is found that the rotor loads and nacelle acceleration are the main components of the tower tilt and roll moments. The high correlation between the tower moment loads and rotor loads characteristics including nacelle displacement or tilt angle and generator power, is evaluated with Person coefficient. With the tower bottom load as research subject, the surrogate model for tower bottom load with easy-measuring parameters as input is constructed based on the multiple linear regression algorithm, and the tower bottom resultant moment load can be identified in real time. The effectiveness of model is tested by the simulated loads of large-scale wind turbine, and it is showed that the relative error of ultimate load and equivalent fatigue load between identified and simulated results is controlled within 6%. On this basis, an on-line system for tower load identification and management is proposed.

关键词

风电机组 / 塔架 / 动载荷 / 在线识别 / 线性回归 / 代理模型

Key words

wind turbines / towers / dynamic loads / on-line load identification / linear regression / surrogate model

引用本文

导出引用
牟哲岳,王瑞良,章培成,陈前,范增辉. 基于代理模型的风电机组塔架载荷在线识别研究[J]. 太阳能学报. 2025, 46(11): 685-691 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1247
Mou Zheyue, Wang Ruiliang, Zhang Peicheng, Chen Qian, Fan Zenghui. STUDY ON ON-LINE LOAD IDENTIFICATION FOR TOWER OF WIND TURBINE BASED ON SURROGATE MODEL[J]. Acta Energiae Solaris Sinica. 2025, 46(11): 685-691 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1247
中图分类号: TH83   

参考文献

[1] CSA C61400-1,Windturbines—part 1: design requirements[S]. CSA, 2014.
[2] GB/T 37257—2018, 风力发电机组机械载荷测量[S].
GB/T 37257—2018, Wind turbines—measurement of mechanical loads[S].
[3] 王瑞良, 孙勇, 李涛, 等. 基于载荷测试的风电机组仿真模型优化与验证[J]. 太阳能学报, 2023, 44(4): 92-98.
WANG R L, SUN Y, LI T, et al.Optimization and verification of wind turbine simulation model based on load test[J]. Acta energiae solaris sinica, 2023, 44(4): 92-98.
[4] 李海波, 张锐, 宫伟, 等. 海上风电机组载荷测试及仿真一致性验证[J]. 船舶工程, 2022, 44(增刊1): 201-207.
LI H B, ZHANG R, GONG W, et al.Load test and simulation consistency verification of offshore wind turbine[J]. Ship engineering, 2022, 44(S1): 201-207.
[5] EVANS M, TAO H, ZHAO S C.Development and validation of real time load estimator on Goldwind 6 MW wind turbine[J]. Journal of physics: conference series, 2018, 1037: 032021.
[6] 薛磊. 大型风电机组载荷监测与延寿评估技术研究[D]. 太原: 山西大学, 2021.
XUE L.Research on load monitoring and life time extension assessment technology of large wind turbine[D]. Taiyuan: Shanxi University, 2020.
[7] 巫发明, 杨从新, 王青, 等. 大型风电机组塔筒动态载荷识别研究与验证[J]. 振动与冲击, 2020, 39(20): 197-203.
WU F M, YANG C X, WANG Q, et al.Research and verification of dynamic load identification for a large wind turbine tower[J]. Journal of vibration and shock, 2020, 39(20): 197-203.
[8] 巫发明. 大型双馈风电机组关键部件动力学特性分析与载荷识别研究[D]. 兰州: 兰州理工大学, 2021.
WU F M.Dynamic characteristics analysis and load identification and verification of key components of large wind turbine[D]. Lanzhou: Lanzhou University of Technology, 2021.
[9] 邓敏强, 邓艾东, 朱静, 等. 基于模态叠加法的风电机组塔架实时状态研究[J]. 太阳能学报, 2021, 42(3): 63-70.
DENG M Q, DENG A D, ZHU J, et al.Research on real-time state of wind turbine tower based on modal superposition method[J]. Acta energiae solaris sinica, 2021, 42(3): 63-70.
[10] BILBAO J, LOURENS E M, SCHULZE A, et al.Virtual sensing in an onshore wind turbine tower using a Gaussian process latent force model[J]. Data-centric engineering, 2022, 3: e35.
[11] BRANLARD E, GIARDINA D, BROWN C S D. Augmented kalman filter with a reduced mechanical model to estimate tower loads on a land-based wind turbine: a step towards digital-twin simulations[J]. Wind energy science, 2020, 5(3): 1155-1167.
[12] BRANLARD E, JONKMAN J, DANA S, et al.A digital twin based on OpenFAST linearizations for real-time load and fatigue estimation of land-based turbines[J]. Journal of physics: conference series, 2020, 1618(2): 022030.
[13] WEI D, LI D S, JIANG T, et al.Load identification of a 2.5 MW wind turbine tower using Kalman filtering techniques and BDS data[J]. Engineering structures, 2023, 281: 115763.
[14] 李洁明, 祁新娥. 统计学原理[M]. 5版. 上海: 复旦大学出版社, 2010: 314-317.
LI J M, QI X E.General theory of statistics[M]. 5th ed. Shanghai: Fudan University Press, 2010: 314-317.
[15] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
ZHOU Z H.Machine learning[M]. Beijing: Tsinghua University Press, 2016.

基金

国家重点研发计划(2022YFB4201200)

PDF(21365 KB)

Accesses

Citation

Detail

段落导航
相关文章

/