针对传统直驱式波浪发电系统因波浪频率与速度较低而导致其运行效率低下的问题,同时避免海水腐蚀和风浪冲击对发电装置的影响,提出一种基于线性霍尔的直驱式波浪发电最大功率跟踪控制策略。所提出的多层永磁内嵌式圆筒直线发电机功率密度较高,能有效防止海浪冲击破坏,而线性霍尔在波浪发电中可靠性强且耐海水腐蚀,能有效解决机械传感器和无位置传感器算法在海洋应用环境下的弊病。此外,根据机械共振原理提出波浪能最大跟踪策略,通过控制浮筒运动使其与波浪激励力同相位,从而提高波浪能转化效率。最后,搭建直驱式波浪发电控制策略仿真与硬件实验平台,实验与仿真结果吻合,验证所提出控制策略有效性。
Abstract
Aiming at the problem of low efficiency of traditional direct drive wave power generation system due to low wave frequency and speed, and avoiding the influence of seawater corrosion and wind wave impact on the power generation device, a linear Hall based maximum power tracking control strategy for direct drive wave power generation is proposed in this paper. The proposed multi-layer permanent magnet embedded cylinder linear generator has high power density and can effectively prevent the damage of the wave impact, while the linear Hall has strong reliability and resistance to seawater corrosion in wave power generation, and can effectively solve the disadvantages of mechanical sensors and sensorless algorithms in the marine application environment. In addition, according to the principle of mechanical resonance, the maximum tracking strategy of wave energy is proposed, and the wave energy conversion efficiency is improved by controlling the float movement to make it in phase with the wave excitation force. Finally, the control strategy simulation and hardware experiment platform of direct drive wave power generation are built. The experimental results are consistent with the simulation results, verifying the effectiveness of the proposed control strategy.
关键词
波浪能收集 /
功率控制 /
能量转换系统 /
直线电机 /
线性霍尔 /
最大效率跟踪
Key words
wave energy harvesting /
power control /
power takeoffs /
linear motors /
linear Hall /
maximum efficiency tracking
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 杨金明, 黄伟. 直驱式波浪发电系统的状态切换控制方法[J]. 华南理工大学学报(自然科学版), 2021, 49(2): 1-8.
YANG J M, HUANG W.State switching control method for direct-drive wave power generation system[J]. Journal of South China University of Technology (natural science edition), 2021, 49(2): 1-8.
[2] 赖文斌, 李德堂, 谢永和, 等. 摇臂式波浪发电装置设计与试验研究[J]. 渔业现代化, 2020, 47(2): 82-88.
LAI W B, LI D T, XIE Y H, et al.Design and experimental study of rocker type wave power conversion device[J]. Fishery modernization, 2020, 47(2): 82-88.
[3] DONG S Z, WU Z Q.Prescribed performance adaptive MPPT control of direct-drive wave energy generation system[J]. Ocean engineering, 2024, 298: 117066.
[4] 王超凡, 杨俊华, 罗琦, 等. 直驱式波浪发电系统功率优化鲁棒控制[J]. 太阳能学报, 2023, 44(8): 550-555.
WANG C F, YANG J H, LUO Q, et al.Power optimization and robust control of direct-drive wave power system[J]. Acta energiae solaris sinica, 2023, 44(8): 550-555.
[5] 王泊桦. 直驱式波浪发电系统波能转换技术研究[D]. 大连: 大连海事大学, 2022.
WANG B H.Wave energy conversion technology of direct-drive wave energy generation system[D]. Dalian: Dalian Maritime University, 2022.
[6] 肖晓龙, 肖龙飞, 杨立军. 串联直驱浮子式波浪能发电装置能量捕获研究[J]. 太阳能学报, 2018, 39(2): 398-405.
XIAO X L, XIAO L F, YANG L J.Energy harvesting study of series direct driven float wave energy converter[J]. Acta energiae solaris sinica, 2018, 39(2): 398-405.
[7] 谷善茂, 何凤有, 谭国俊, 等. 永磁同步电动机无传感器控制技术现状与发展[J]. 电工技术学报, 2009, 24(11): 14-20.
GU S M, HE F Y, TAN G J, et al.A review of sensorless control technology of permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2009, 24(11): 14-20.
[8] 张波, 葛琼璇, 刘金鑫, 等. 基于扩展反电动势法的长定子直线同步电机无速度传感器控制研究[J]. 电工技术学报, 2017, 32(23): 91-99.
ZHANG B, GE Q X, LIU J X, et al.Research on speed sensorless control of long stator linear synchronous motor based on EEMF[J]. Transactions of China Electrotechnical Society, 2017, 32(23): 91-99.
[9] 谢子森. 直驱式波浪发电系统无速度传感器控制研究[D]. 广州: 广东工业大学, 2022.
XIE Z S.Research on speed sensorless control of direct-drive wave power generation system[D]. Guangzhou: Guangdong University of Technology, 2022.
[10] 邱孟, 杨俊华, 林汇金, 等. 直驱式波浪发电系统无源-滑模控制策略[J]. 太阳能学报, 2022, 43(10): 357-363.
QIU M, YANG J H, LIN H J, et al.Passive-sliding mode control strategy of direct-drive wave power system[J]. Acta energiae solaris sinica, 2022, 43(10): 357-363.
[11] 贾玉森. 共振弹簧辅助的直驱式波浪能发电系统研究[D]. 大连: 大连海事大学, 2021.
JIA Y S.Resonance spring assisted direct-drive wave energy converter[D]. Dalian: Dalian Maritime University, 2021.
[12] 肖尧. 主动共振C式浮力摆波能发电控制系统关键技术的研究[D]. 武汉: 武汉科技大学, 2021.
XIAO Y.Research on key control techniques of active resona-nce C-type buoyancy pendulum wave power system[D]. Wuhan: Wuhan University of Science and Technology, 2021.
[13] HAI L, GÖTEMAN M, LEIJON M. A methodology of modelling a wave power system via an equivalent RLC circuit[J]. IEEE transactions on sustainable energy, 2016, 7(4): 1362-1370.
[14] 黄宝洲, 杨俊华, 沈辉, 等. 基于FFT的直驱式波浪发电系统功率优化控制[J]. 太阳能学报, 2021, 42(3): 206-213.
HUANG B Z, YANG J H, SHEN H, et al.Power optimization control of direct drive wave power system based on FFT[J]. Acta energiae solaris sinica, 2021, 42(3): 206-213.
[15] 林巧梅, 杨俊华, 蔡浩然, 等. 基于滑模控制的直驱式波浪发电系统MPPT控制策略[J]. 电测与仪表, 2018, 55(10): 90-95.
LIN Q M, YANG J H, CAI H R, et al.MPPT algorithm for direct-drive wave power generation system based on sliding mode control[J]. Electrical measurement & instrumentation, 2018, 55(10): 90-95.
基金
国家自然科学基金面上项目(41876096); 江苏省自然科学青年基金(BK20201034); 江苏省配电网智能技术与装备协同创新中心(XTCX202002)