将玉米秸秆炭化后与国槐废弃物混合制成生物质育苗钵,采用响应面法分析成型温度、压力、粘结剂比例、原料混合比对育苗钵密度、跌落破损性、承压破损性的影响,应用满意度函数法和多种群遗传算法优化工艺参数,并分析育苗钵对土壤理化特性的影响。结果表明:在温度60~110 ℃、压力8~18 MPa、粘结剂与原料质量比(0.6~1.3)∶1、玉米秸秆炭含量10%~60%的范围内,育苗钵的密度、跌落破损率和承压破损率分别达到0.908 g/cm3、2.98%和2.68%。最佳工艺参数组合为:温度67 ℃、压力13.64 MPa、粘结剂与原料质量比0.78∶1、玉米秸秆炭与国槐原料质量比3∶7,在此条件下育苗钵密度为1.032 g/cm3,跌落破损率为2.65%,承压破损率为2.34%,与预测值的相对误差分别仅为0.02%、0.01%及0.03%。育苗钵埋入土壤8周后,土壤pH值由8.92降至8.02,土壤速效氮、速效磷和速效钾分别提升57.1、27.0及38.0 mg/kg,玉米秸秆炭混合国槐生物质育苗钵可有效降低土壤pH值并提高土壤肥力。
Abstract
Response surface methodology was used to analyze the effects of molding temperature, pressure, proportion of binder and mixing ratio of raw materials on the density of seedling bowl, breakage by dropping, and breakage by pressure. Then the process parameters were optimized by applying the satisfaction function method and multi-population genetic algorithm. In addition, the effect of seedling bowls on the physicochemical properties of soil was also analyzed. The results showed that the density, drop breakage rate and compressive breakage rate of seedling bowls reached 0.908 g/cm3, 2.98% and 2.68%, with the temperature of 60-110 ℃, pressure of 8-18 MPa, binder to raw material mass ratio of 0.6∶1-1.3∶1, and the corn stover charcoal content of 10%-60%. The optimal combinations of process parameters were temperature 67 ℃, pressure 13.64 MPa, binder to raw material mass ratio 0.78∶1, and corn stover charcoal to Sophora japonica raw material mass ratio 3∶7, under which the density, drop breakage rate and compressive breakage rate of seedling bowls were 1.032 g/cm3, 2.65% and 2.34%, which were only 0.02%, 0.01%, and 0.03% from the predicted values. After the seedling bowls were buried in the soil for 8 weeks, the soil pH value decreased from 8.92 to 8.02, and the soil quick-acting nitrogen, quick-acting phosphorus, and quick-acting potassium increased by 57.1, 27.0, and 38.0 mg/kg respectively, which indicated that the corn stover charcoal-mixed Sophora japonica biomass seedling bowl could effectively reduce the soil pH value and improve the soil fertility.
关键词
生物炭 /
生物质 /
成型 /
生物质育苗钵 /
物理特性 /
土壤理化特性
Key words
biochar /
biomass /
molding /
biomass seedling bowl /
physical properties /
soil physicochemical properties
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 许海超, 杨静利, 叶汉毅, 等. “双碳” 背景下生物炭的土壤减排固碳研究进展[J]. 资源节约与环保, 2024(4): 19-23, 29.
XU H C, YANG J L, YE H Y, et al.Research progress on soil emission reduction and carbon fixation of biochar under the background of “double carbon”[J]. Resources economization & environmental protection, 2024(4): 19-23, 29.
[2] 尤心雨, 李正昊, 姜华, 等. 农业废弃物制备生物炭方法及应用现状[J]. 现代农业科技, 2024(3): 107-113, 118.
YOU X Y, LI Z H, JIANG H, et al.Preparation methods and application status of biochar from agricultural waste[J]. Modern agricultural science and technology, 2024(3): 107-113, 118.
[3] ZHANG Z R, ZHAO X.Environmental factors analysis on the sustainable development of agriculture in China[J]. Advance journal of food science and technology, 2013, 5(1): 36-40.
[4] 杨杰. 玉米、荞麦秸秆生物质育苗钵成型工艺研究[D]. 太谷: 山西农业大学, 2021.
YANG J.Study on biomass seedling bottle forming process of corn and buckwheat straw[D]. Taigu: Shanxi Agricultural University, 2021.
[5] 倪琳. 不同比例腐解秸秆及生物质炭代替泥炭用作番茄育苗基质研究[D]. 长春: 吉林农业大学, 2021.
NI L.Study on different proportion of humified corn straw and biochar instead of peat as tomato seedling substrate[D]. Changchun: Jilin Agricultural University, 2021.
[6] 廖玮, 张雄, 杨海平, 等. 生物炭成炭调控及固化土壤重金属研究进展[J]. 能源环境保护, 2024, 38(2): 14-23.
LIAO W, ZHANG X, YANG H P, et al.Advances in biochar carbonization regulation and remediation of soil heavy metals[J]. Energy environmental protection, 2024, 38(2): 14-23.
[7] 王君玲, 高玉芝, 尹维达. 秸秆类型对秸秆育苗钵成型质量的影响[J]. 沈阳农业大学学报, 2010, 41(3): 357-359.
WANG J L, GAO Y Z, YIN W D.Experimental study on extrusion moulding quality of nursing container made from different kinds of straw[J]. Journal of Shenyang Agricultural University, 2010, 41(3): 357-359.
[8] 杨杰, 张静, 孙欣伊, 等. 基于MOPSO的荞麦秸秆育苗钵成型工艺参数优化[J]. 太阳能学报, 2023, 44(5): 1-9.
YANG J, ZHANG J, SUN X Y, et al.Optimization of process parameters of buckwheat straw seedling Boxing based on MOPSO[J]. Acta energiae solaris sinica, 2023, 44(5): 1-9.
[9] BANIYA B K, TIWARI R K, CHAUDHARY P, et al.Planting materials seed systems of finger millet, rice and taro in jumla, kaski and bara districts of Nepal[J]. Nepal agriculture research journal, 1970, 6: 10-22.
[10] 张志军, 王慧杰, 李会珍, 等. 秸秆育苗钵在棉花育苗移栽上的应用及效益分析[J]. 农业工程学报, 2011, 27(7): 279-282.
ZHANG Z J, WANG H J, LI H Z, et al.Application and benefit analysis of straw block in seedling transplanting of cotton[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(7): 279-282.
[11] LU D H, TABIL L G, WANG D C, et al.Experimental trials to make wheat straw pellets with wood residue and binders[J]. Biomass and bioenergy, 2014, 69: 287-296.
[12] 孙启新, 张仁俭, 董玉平. 基于ANSYS的秸秆类生物质冷成型仿真分析[J]. 农业机械学报, 2009, 40(12): 130-134.
SUN Q X, ZHANG R J, DONG Y P.Simulation analysis of compressing molding under general condition for straw biomass based on ANSYS[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(12): 130-134.
[13] FERREIRA S L C, BRUNS R E, FERREIRA H S, et al. Box-Behnken design: an alternative for the optimization of analytical methods[J]. Analytica chimica acta, 2007, 597(2): 179-186.
[14] ASTM D 440—86,Standard test method of drop shatter test for coal[S].
[15] 何桢, 宗志宇, 孔祥芬. 改进的满意度函数法在多响应优化中的应用[J]. 天津大学学报, 2006, 39(9): 1136-1140.
HE Z, ZONG Z Y, KONG X F.Application of improved desirability function method to the multi-response optimization[J]. Journal of Tianjin University, 2006, 39(9): 1136-1140.
[16] 何桢, 朱鹏飞. 基于模式搜索的渴求函数法在多响应优化中的应用[J]. 数学的实践与认识, 2009, 39(18): 114-121.
HE Z, ZHU P F.Application of pattern search algorithm to multiresponse optimization based on desirability functions[J]. Mathematics in practice and theory, 2009, 39(18): 114-121.
[17] RUDOLPH G.Convergence analysis of canonical genetic algorithms[J]. IEEE transactions on neural networks, 1994, 5(1): 96-101.
[18] HU Q, YANG H P, YAO D D, et al.The densification of bio-char: effect of pyrolysis temperature on the qualities of pellets[J]. Bioresource technology, 2016, 200: 521-527.
[19] 钱晓亮, 张静, 郑德聪, 等. 基于渴求函数法的玉米秸秆炭与油松混合燃料工艺参数优化[J]. 太阳能学报, 2023, 44(4): 216-224.
QIAN X L, ZHANG J, ZHENG D C, et al.Optimization of technological parameters of mixed fuel of corn stover charcoal and Pinus tabulaeformis based on desirability function method[J]. Acta energiae solaris sinica, 2023, 44(4): 216-224.
[20] 刘洪杰. 生物质育苗营养钵成型机理与装备研究[D]. 保定: 河北农业大学, 2015.
LIU H J.Biomass seedling nutrition bowl forming mechanism and equipment research[D]. Baoding: Hebei Agricultural University, 2015.
[21] 张秀丽. 秸秆型育苗基质对茄果类蔬菜秧苗素质的影响[D]. 长春: 吉林农业大学, 2004.
ZHANG X L.The effect of corn straw media on quality of eggplant tomato and sweet pepper seedlings[D]. Changchun: Jilin Agricultural University, 2004.
[22] 涂永成. 干旱矿区复合微生物菌肥土壤改良实验研究[D]. 徐州: 中国矿业大学, 2015.
TU Y C.The study of compound microbial bacterial fertilizer in soil improvement on drought mining area[D]. Xuzhou: China University of Mining and Technology, 2015.
基金
国家燕麦荞麦产业体系重大专项(CARS-07-D-2); 吕梁市科技计划项目(农业领域重点研发)(2023NYYF08)