基于自主研发的砂层淤堵装置系统分别研究渗流方向和流体速度改变时大肠杆菌的“沉积-脱离”特性。试验结果表明:1)3种不同流速下大肠杆菌堵塞呈马鞍状,浓度变化值先增加后减小,回调后再减小。其中,卡喉处的大肠杆菌阻塞具有一定的“依赖性”,影响回灌的效率;2)在改变渗流方向并增大流速后,大肠杆菌“沉积-脱离”的动态平衡被打破,大肠杆菌的浓度值降低,原本沉积在孔隙内的大肠杆菌在外力驱动下发生运移。通过监测出口端液样发现浓度值有较大幅度的增加。结合工程实践,若采用回扬的方式处理大肠杆菌阻塞的井周,过长的清洗时间可能会产生新的堵塞物,反而无法达到彻底清洗井体的要求,因此需要控制回扬的合理时间。
Abstract
During the process of groundwater source heat pump recharge, microbial blockage represented by Escherichia coli is one of the important causes of ground subsidence, and studying its blockage characteristics is of great practical significance. We studied the “sedimentation detachment” characteristics of Escherichia coli when the direction of seepage and fluid velocity changed using a self-developed sand layer clogging device. The experimental results showed that: 1) Escherichia coli blockage exhibited a saddle shape under three different flow rates, with concentration changes increasing first and then decreasing, and then decreasing again after a correction. Among them, the blockage of Escherichia coli at the throat has a certain degree of dependence, which affects the efficiency of reinjection; 2) After changing the direction of seepage and increasing the flow rate, the dynamic balance of “sedimentation detachment” of Escherichia coli is disrupted, and the concentration of Escherichia coli decreases. The Escherichia coli that originally deposited in the pores are driven to migrate by external forces. By monitoring the liquid sample at the outlet, it was found that there was a significant increase in concentration values. Based on engineering practice, if the method of backflushing is used to treat the wellbore blocked by Escherichia coli, excessive cleaning time may cause new blockages, which may not meet the requirements of thorough cleaning of the wellbore. Therefore, it is necessary to control the reasonable time of backflushing.
关键词
大肠杆菌 /
水源热泵 /
沉积-脱离 /
砂砾 /
堵塞 /
微生物
Key words
Escherichia coli /
water source heat pump /
sedimentation detachment /
sand and gravel /
clogging /
microorganism
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 国务院. 国务院关于印发2030年前碳达峰行动方案的通知[EB/OL]. https://www.gov.cn/zhengce/zhengceku/2021-10/26/content_5644984.htm.
The State Council. Notice of the state council on issu-ing the action plan for peaking carbon emissions before2030[EB/OL]. https://www.gov.cn/zhengce/zhengceku/2021-10/26/content_5644984.htm.
[2] 刘晓慧. 高质量开发利用地热能助力美丽中国建设[N]. 中国矿业报, 2024-01-18(1).
LIU X H. High-quality development and utilization of geothermal energy to contribute to the construction of a beautiful China[N]. China mining news, 2024-01-18(1).
[3] 李安桂, 史丙金, 张婉卿, 等. 基于太阳能利用的相变蓄热水箱结构优化[J]. 太阳能学报, 2020, 41(2): 217-224.
LI A G, SHI B J, ZHANG W Q, et al.Structure optimization of phase change thermal storage water tank based on solar energy utilization[J]. Acta energiae solaris sinica, 2020, 41(2): 217-224.
[4] 邬小波. 地下含水层储能和地下水源热泵系统中地下水回路与回灌技术现状[J]. 暖通空调, 2004, 34(1): 19-22.
WU X B.Development of ground water loop for ATES and ground water source heat pump systems[J]. Heating ven tilating & air conditioning, 2004, 34(1): 19-22.
[5] 赵忠仁. 回灌井暂时性堵塞物的形成及其排除过程变化机制分析[J]. 水文地质工程地质, 1988, 15(5): 39-42.
ZHAO Z R.Analysis on the formation of temporary blockage in recharge well and its removal process[J]. Hydrogeology and engineering geology, 1988, 15(5): 39-42.
[6] 何满潮, 刘斌, 姚磊华, 等. 地下热水回灌过程中渗透系数研究[J]. 吉林大学学报(地球科学版), 2002, 32(4): 374-377.
HE M C, LIU B, YAO L H, et al.Study on hydraulic conductivity during geothermal reinjection[J]. Journal of Changchun University of Science and Technology, 2002, 32(4): 374-377.
[7] 赵军, 张程远, 刘泉声. 地下水源热泵砂层阻塞试验研究(Ⅱ)[J]. 岩石力学与工程学报, 2013, 32(S2): 3363-3369.
ZHAO J, ZHANG C Y, LIU Q S.Experimental study of particles clogging in sand layer of ground-source heat pump(Ⅱ)[J]. Chinese journal of rock mechanics and engineering, 2013, 32(S2): 3363-3369.
[8] 赵军, 刘泉声, 张程远. 水源热泵井回灌堵塞颗粒迁移模型的建立[J]. 岩土力学, 2013, 34(11): 3249-3253.
ZHAO J, LIU Q S, ZHANG C Y.Establishment of particle transport model in water source heat pump of physical clogging reinjection well[J]. Rock and soil mechanics, 2013, 34(11): 3249-3253.
[9] 赵军, 张程远, 刘泉声. 水源热泵回灌井悬浮颗粒运移和沉积物理特性试验模型研究[J]. 岩石力学与工程学报, 2014, 33(2): 257-263.
ZHAO J, ZHANG C Y, LIU Q S.Test study of physical properties of suspended particles migration and deposition in water source heat pump injection well[J]. Chinese journal of rock mechanics and engineering, 2014, 33(2): 257-263.
[10] 赵军, 吴雨明, 张程远. 地下水源热泵物理阻塞系统介质长度改变时沉积特性参数研究[J]. 太阳能学报, 2019, 40(5): 1193-1197.
ZHAO J, WU Y M, ZHANG C Y.Study on parameters of deposition characteristics of medium length of water source heat pump system[J]. Acta energiae solaris sinica, 2019, 40(5): 1193-1197.
[11] NAGANO K, MOCHIDA T, OCHIFUJI K.Influence of natural convection on forced horizontal flow in saturated porous media for aquifer thermal energy storage[J]. Applied thermal engineering, 2002, 22(12): 1299-1311.
[12] RAFFERTY K D.Water chemistry issues in geothermal heat pump system[J]. ASHRAE transactions, 2004, 110(1): 550-555.
[13] 曾晓佳. 天然滤床淤塞机理及防治研究[D]. 成都: 成都理工大学, 2007.
ZENG X J.A study on silting and prophylactico-therapeutic measures of filtering bed[D]. Chengdu: Chengdu University of Technology, 2007.
[14] BENNETT P, SIEGEL D I.Increased solubility of quartz in water due to complexing by organic compounds[J]. Nature, 1987, 326(6114): 684-686.
[15] THULLNER M, BAVEYE P.Computational pore network modeling of the influence of biofilm permeability on bioclogging in porous media[J]. Biotechnology and bioengineering, 2008, 99(6): 1337-1351.
[16] WEROŃSKI P, WALZ J Y, ELIMELECH M. Effect of depletion interactions on transport of colloidal particles in porous media[J]. Journal of colloid and interface science, 2003, 262(2): 372-383.
基金
岩土力学与工程安全全国重点实验室基金(SKLGGES-024038)