考虑应变软化效应的海上风力机四桩基础水平承载力预测模型

赵子豪, 朱恩林, 余代广, 罗海东, 周涵, 张正飞

太阳能学报 ›› 2025, Vol. 46 ›› Issue (11) : 730-740.

PDF(3194 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3194 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (11) : 730-740. DOI: 10.19912/j.0254-0096.tynxb.2024-1287

考虑应变软化效应的海上风力机四桩基础水平承载力预测模型

  • 赵子豪1~3, 朱恩林1, 余代广4, 罗海东4, 周涵1, 张正飞1
作者信息 +

PREDICTIVE MODEL FOR LATERAL BEARING CAPACITY OF OFFSHORE WIND TURBINE FOUR-PILE FOUNDATION CONSIDERING STRAIN SOFTENING

  • Zhao Zihao1~3, Zhu Enlin1, Yu Daiguang4, Luo Haidong4, Zhou Han1, Zhang Zhengfei1
Author information +
文章历史 +

摘要

通过ABAQUS有限元软件,建立四桩基础三维有限元数值模型,并开发VUMAT用户子程序实现软黏土应变软化本构关系,系统研究应变软化参数δremξ95、应变率参数μ、桩间距S、桩长L等关键参数对四桩基础水平极限承载力的影响规律,重点揭示桩群相互作用的主导作用。参数分析表明,水平承载力系数随应变软化参数δremξ95和应变率参数μ的增大而增大,且不同参数对承载力的影响程度存在显著差异。随着桩间距和桩长的增加,桩群相互作用减弱,导致承载力增幅减小,其破坏机制也会发生转变。最后,基于人工神经网络建立考虑多参数影响的四桩基础水平承载力预测模型。

Abstract

A three-dimensional finite element model of a four-pile foundation is established using ABAQUS software, and the strain softening constitutive relationship of soft clay is implemented through a VUMAT user subroutine. This study systematically investigates the influence of key parameters—such as the strain softening parameters δrem and ξ95, the strain rate parameter μ, pile spacing S, and pile length L—on the horizontal ultimate bearing capacity of a four-pile foundation, with a focus on revealing the dominant role of pile group interaction. Parametric analysis reveals that the horizontal bearing capacity factor increases with the strain softening parameters δrem and ξ95 and the strain rate parameter μ, with notable differences in the degree of influence among these parameters. As the pile spacing and pile length increase, the pile group interaction weakens, resulting in a diminishing increase in the bearing capacity and a transition in failure mechanism. Finally, an artificial neural network-based prediction model for the horizontal bearing capacity of the four-pile foundation is established, incorporating the effects of multiple parameters.

关键词

风力机 / 黏土 / 应变率 / 桩基础 / 水平承载力 / 应变软化

Key words

wind turbines / clay / strain rate / pile foundation / horizontal bearing capacity / strain softening

引用本文

导出引用
赵子豪, 朱恩林, 余代广, 罗海东, 周涵, 张正飞. 考虑应变软化效应的海上风力机四桩基础水平承载力预测模型[J]. 太阳能学报. 2025, 46(11): 730-740 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1287
Zhao Zihao, Zhu Enlin, Yu Daiguang, Luo Haidong, Zhou Han, Zhang Zhengfei. PREDICTIVE MODEL FOR LATERAL BEARING CAPACITY OF OFFSHORE WIND TURBINE FOUR-PILE FOUNDATION CONSIDERING STRAIN SOFTENING[J]. Acta Energiae Solaris Sinica. 2025, 46(11): 730-740 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1287
中图分类号: TU473   

参考文献

[1] 柳涛, 秦梦飞, 施伟. 基于离心机实验的海上风力机大直径单桩桩土作用研究[J]. 太阳能学报, 2024, 45(8): 537-545.
LIU T, QIN M F, SHI W.Soil-structure interaction analysis of large-diameter monopile of offshore wind turbine based on centrifugal model test[J]. Acta energiae solaris sinica, 2024, 45(8): 537-545.
[2] BROWN D A, MORRISON C, REESE L C.Lateral load behavior of pile group in sand[J]. Journal of geotechnical engineering, 1988, 114(11): 1261-1276.
[3] 李早. 承台群桩风力机基础水平向力学反应分析[J]. 太阳能学报, 2015, 36(10): 2479-2484.
LI Z.Analysis of lateral mechanical response of group piles foundation of wind turbine[J]. Acta energiae solaris sinica, 2015, 36(10): 2479-2484.
[4] GEORGIADIS K, SLOAN S W, LYAMIN A V.Ultimate lateral pressure of two side-by-side piles in clay[J]. Géotechnique, 2013, 63(9): 733-745.
[5] ZHAO Z H, KOURETZIS G, SLOAN S W, et al.Effect of geometric nonlinearity on the ultimate lateral resistance of piles in clay[J]. Computers and geotechnics, 2019, 105: 110-115.
[6] ZHAO Z H, LI D Y, ZHANG F, et al.Ultimate lateral bearing capacity of tetrapod jacket foundation in clay[J]. Computers and geotechnics, 2017, 84: 164-173.
[7] SHEIL B B.Lateral limiting pressure on square pile groups in undrained soil[J]. Géotechnique, 2021, 71(4): 279-287.
[8] ZHOU H, LIU H L, LI Y Z, et al.Limit lateral resistance of XCC pile group in undrained soil[J]. Acta geotechnica, 2020, 15(6): 1673-1683.
[9] SKEMPTON A W.Long-term stability of clay slopes[J]. Géotechnique, 1964, 14(2): 77-102.
[10] EINAV I, RANDOLPH M F.Combining upper bound and strain path methods for evaluating penetration resistance[J]. International journal for numerical methods in engineering, 2005, 63(14): 1991-2016.
[11] ZHOU H, RANDOLPH M F.Resistance of full-flow penetrometers in rate-dependent and strain-softening clay[J]. Géotechnique, 2009, 59(2): 79-86.
[12] YU H, ZHOU H, SHEIL B, et al.Finite element modelling of helical pile installation and its influence on uplift capacity in strain softening clay[J]. Canadian geotechnical journal, 2022, 59(12): 2050-2066.
[13] XIAO Z, FU D F, ZHOU Z F, et al.Effects of strain softening on the penetration resistance of offshore bucket foundation in nonhomogeneous clay[J]. Ocean engineering, 2019, 193: 106594.
[14] XIAO Z, TIAN Y H, GOURVENEC S.A practical method to evaluate failure envelopes of shallow foundations considering soil strain softening and rate effects[J]. Applied ocean research, 2016, 59: 395-407.
[15] 吴宜鹏, 范庆来, 任增乾, 等. 考虑软土应变软化效应的深埋式大圆筒承载性状分析[J]. 防灾减灾工程学报, 2022, 42(4): 859-865.
WU Y P, FAN Q L, REN Z Q, et al.Bearing behavior of deeply-embedded large-diameter cylindrical structure considering strain softening effect of soft clay[J]. Journal of disaster prevention and mitigation engineering, 2022, 42(4): 859-865.
[16] ZHOU S J, ZHOU M, TIAN Y H, et al.Effects of strain rate and strain softening on the installation of helical pile in soft clay[J]. Ocean engineering, 2023, 285: 115370.
[17] ZHU B, DAI J L, KONG D Q, et al.Centrifuge modelling of uplift response of suction caisson groups in soft clay[J]. Canadian geotechnical journal, 2020, 57(9): 1294-1303.
[18] HAZELL E.Numerical and experimental studies of shallow cone penetration in clay[D]. Oxford: University of Oxford, 2008.
[19] 刘冰雪. 海上风机桩基础承载特性的三维有限元分析[D]. 大连: 大连理工大学, 2009.
LIU B X.Study on bearing capacity behavior of mono·pile foundation for offshore wind turbines using 3-D FEM[D]. Dalian: Dalian University of Technology, 2009.
[20] 赵俭斌, 薛允杰, 王启, 等. 基于结构受力状态理论的群桩基础承载力研究[J]. 沈阳建筑大学学报(自然科学版), 2023, 39(6): 989-998.
ZHAO J B, XUE Y J, WANG Q, et al.Research on the bearing capacity of group pile foundation based on the theory of struc0tural stress state[J]. Journal of Shenyang Jianzhu University(natural science), 2023, 39(6): 989-998.
[21] PARK Y S, LEK S.Chapter 7 artificial neural networks multilayer perceptron for ecological modeling[J]. Developments in environmental modelling, 2016, 28: 123-140.
[22] 张令心, 戴静涵, 沈俊凯, 等. 基于LM-BP神经网络的钢筋混凝土框架结构震害快速预测模型[J]. 自然灾害学报, 2019, 28(2): 1-9.
ZHANG L X, DAI J H, SHEN J K, et al.Rapid prediction model of earthquake damage to frame structure based on LM-BP neural network[J]. Journal of natural disasters, 2019, 28(2): 1-9.
[23] 宋福春, 杨子豪, 付聿旻, 等. 基于LSTM神经网络和残余力向量法的结构损伤识别[J]. 沈阳建筑大学学报(自然科学版), 2023, 39(5): 872-879.
SONG F C, YANG Z H, FU Y M, et al.Structural damage recognition based on LSTM neural network and residual force vector method[J]. Journal of Shenyang Jianzhu University(natural science), 2023, 39(5): 872-879.
[24] 姜彤, 何天乐, 王璇, 等. 波浪荷载下海上风力机桩基础滞回效应及水平承载力变化特性研究[J]. 太阳能学报, 2024, 45(8): 546-553.
JIANG T, HE T L, WANG X, et al.Study on hysteretic effect and horizontal bearing capacity of pile foundation for offshore wind turbine under wave load[J]. Acta energiae solaris sinica, 2024, 45(8): 546-553.

基金

国家自然科学基金(52378357); 教育部“春晖计划”合作科研项目(HZKY20220416); 辽宁省教育厅高校基本科研项目(JYTMS20231608); 沈阳市优秀中青年科技人才项目(RC230805)

PDF(3194 KB)

Accesses

Citation

Detail

段落导航
相关文章

/