首先基于Ishihara高斯尾流模型、能量守恒叠加尾流模型、秃鹫等多种优化算法建立精确的偏航角计算流程并比较各算法的效率,通过与文献中的大涡模拟(LES)数据对比分析湍流叠加系数对结果的影响。随后,基于所提出的3步快速计算(TSFC)优化算法建立偏航角快速优化流程。分别采用上述两种优化算法对串列风力机和优化布局风力机进行偏航角优化计算。结果表明,当湍流叠加系数为2.8时,下游湍流度预测较为准确;对不同布局的风场,采用主动偏航功率可提高0.4%~2.2%。此外,TSFC算法在效率上显著优于秃鹫优化算法,运行时间减少一个数量级。
Abstract
This paper establishes an accurate process for yaw angle calculation based on the Ishihara Gaussian wake model, the energy-conserving wake superposition model, and several optimization algorithms, including the African Vulture Optimization Algorithm (AVOA). The efficiency of these algorithms is evaluated, and the influence of the turbulence superposition coefficient on the results is analyzed by comparing with LES data from the literature. Furthermore, a rapid yaw angle optimization process is developed using the TSFC optimization algorithm proposed in this study. Both optimization algorithms are applied to yaw angle optimization for turbines in tandem and in optimized layout configurations. The results indicate that a turbulence superposition coefficient of 2.8 leads to more accurate predictions of downstream turbulence intensity. For wind farms with varying layouts, active yaw control can improve power generation by 0.4% to 2.2%. Additionally, the TSFC algorithm significantly outperforms the African Vulture Optimization Algorithm in terms of efficiency, reducing computational time by an order of magnitude.
关键词
风电场 /
优化 /
尾流 /
偏航控制 /
风力机 /
算法
Key words
wind farm /
optimization /
wake /
yaw control /
wind turbines /
algorithm
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李大伟, 王鹏, 刘建平, 等. 大型风电场尾流效应的耦合求解方法[J]. 太阳能学报, 2023, 44(2): 93-98.
LI D W, WANG P, LIU J P, et al.Coupled method for evaluating wake effect of large wind farms[J]. Acta energiae solaris sinica, 2023, 44(2): 93-98.
[2] STEVENS R J A M, MENEVEAU C. Flow structure and turbulence in wind farms[J]. Annual review of fluid mechanics, 2017, 49: 311-339.
[3] HOWLAND M F, LELE S K, DABIRI J O.Wind farm power optimization through wake steering[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(29): 14495-14500.
[4] BASTANKHAH M, PORTÉ-AGEL F.Wind farm power optimization via yaw angle control: a wind tunnel study[J]. Journal of renewable and sustainable energy, 2019, 11(2): 023301.
[5] BASTANKHAH M, PORTÉ-AGEL F.A new analytical model for wind-turbine wakes[J]. Renewable energy, 2014, 70: 116-123.
[6] 张子良, 郭乃志, 易侃, 等. 基于稳定偏航的风电场协同控制[J]. 太阳能学报, 2024, 45(6): 530-535.
ZHANG Z L, GUO N Z, YI K, et al.Coordinated control of wind farm based on steady yaw[J]. Acta energiae solaris sinica, 2024, 45(6): 530-535.
[7] 宁旭, 曹留帅, 万德成. 基于尾流模型的风场偏航控制优化研究[J]. 海洋工程, 2020, 38(5): 80-90.
NING X, CAO L S, WAN D C.Study of wind farm optimization through yaw control based on analytical wake model[J]. The ocean engineering, 2020, 38(5): 80-90.
[8] NIAYIFAR A, PORTÉ-AGEL F.Analytical modeling of wind farms: a new approach for power prediction[J]. Energies, 2016, 9(9): 741.
[9] 蒋秋俊, 郑海涛, 杨庆山, 等. 基于网格-坐标化遗传算法的风电场布局优化[J]. 太阳能学报, 2022, 43(8): 266-272.
JIANG Q J, ZHENG H T, YANG Q S, et al.Wind farm layout optimization based on grid-coordinate genetic algorithm[J]. Acta energiae solaris sinica, 2022, 43(8): 266-272.
[10] 张子良, 郭乃志, 易侃, 等. 基于主动变桨的风电场协同控制[J]. 太阳能学报, 2024, 45(9): 511-516.
ZHANG Z L, GUO N Z, YI K, et al.Cooperative control of wind farm based on active pitch[J]. Acta energiae solaris sinica, 2024, 45(9): 511-516.
[11] QIAN G W, ISHIHARA T.A new analytical wake model for yawed wind turbines[J]. Energies, 2018, 11(3): 665.
[12] ABDOLLAHZADEH B, GHAREHCHOPOGH F S, MIRJALILI S.African vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problems[J]. Computers & industrial engineering, 2021, 158: 107408.
[13] FLEMING P A, STANLEY A P J, BAY C J, et al. Serial-refine method for fast wake-steering yaw optimization[J]. Journal of physics: conference series, 2022, 2265(3): 032109.
[14] WEI D Z, ZHAO W W, WAN D C, et al.A new method for simulating multiple wind turbine wakes under yawed conditions[J]. Ocean engineering, 2021, 239: 109832.
[15] MOSETTI G, POLONI C, DIVIACCO B.Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm[J]. Journal of wind engineering and industrial aerodynamics, 1994, 51(1): 105-116.
[16] WU Y T, PORTÉ-AGEL F.Modeling turbine wakes and power losses within a wind farm using LES: an application to the Horns Rev offshore wind farm[J]. Renewable energy, 2015, 75: 945-955.