通过洗涤、干燥和高温煅烧等物理改性方法对海泡石处理得到改性海泡石(ST),采用真空吸附法以月桂酸(LA)、棕榈酸(PA)二元共晶复合相变材料制备改性海泡石基月桂酸-棕榈酸复合相变蓄热材料(LA-PA/ST)。通过扫面差示量热仪(DSC)、傅里叶变换红外光谱仪(FTIR)、扫描电子显微镜(SEM)、热重分析仪(TG)、热常数分析仪(Hot Disk)及热循环实验等测试方法对LA-PA/ST复合相变材料的热物性、结构分析、热稳定性、导热系数和热可靠性进行系统研究。结果表明:LA-PA与ST的最佳吸附质量比为1∶5时,LA-PA均匀分布在ST的孔隙中且在熔融状态下不发生泄漏。纯LA-PA相变材料导热系数为0.29 W/(m·K),而LA-PA/ST导热系数为1.26 W/(m∙K),与纯LA-PA相比,LA-PA/ST导热系数大大提升;且在100 ℃温度下时几乎不失重,初始失重1%的温度为128.36 ℃;经过200次热循环实验后相变温度降低0.03 ℃;搭建实验平台进行光热转换特性测试,蓄热时间减少461 s,放热时间增加1711 s;实验数据表明LA-PA/ST具有良好的导热性、热稳定性和热循环稳定性。
Abstract
Through physical modification methods such as washing, drying, and high-temperature calcination, sepiolite was treated to obtain modified sepiolite (ST). Using the vacuum adsorption method, ST was used as the support to prepare a lauric acid (LA) and palmitic acid (PA) binary eutectic composite phase change materials, resulting in modified sepiolite-based lauric acid-palmitic acid composite phase change heat storage materials (LA-PA/ST). The thermophysical properties, structural features, thermal conductivity and thermal reliability of the composite phase change materials (PCMs) were systematically investigated by testing methods such as differential scanning calorimeter (DSC), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) thermogravimetric analyzer (TG), HotDisk analyzer and thermal cycling experiments. The results indicated that at an optimal adsorption mass ratio of LA-PA to ST of 1:5, LA-PA was uniformly distributed within the pores of ST and showed no leakage in the molten state. The thermal conductivity of pure LA-PA is 0.29 W/(m·K), whereas that of LA-PA/ST increases significantly to 1.26 W/(m·K). Additionally, the composite exhibited nearly no weight loss at 100 ℃, with initial 1% weight loss occurring at 128.36 ℃. After 200 thermal cycling experiments, the phase change temperature decreased by only 0.03 ℃. An experimental setup was constructed to evaluate the photothermal conversion performance, revealing a 461 s reduction in heat storage time and a 1711 s extension in heat release time. These experimental data demonstrate that LA-PA/ST possesses good thermal conductivity, thermal stability, and thermal cycling stability.
关键词
太阳能 /
相变材料 /
导热系数 /
热性能 /
稳定性
Key words
solar energy /
phase change materials /
thermal conductivity /
thermal performance /
stability
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 马晓敏. 《世界能源统计年鉴2023》中文编译版发布[N]. 中国矿业报, 2023-11-23(2).
MA X M. 《The Chinese version of the World Energy Statistical Yearbook2023》has been released[N]. China mining news, 2023-11-23(2).
[2] 谭倩莉, 刘慧芳, 张铭驿, 等. 月桂酸/硬脂酸/纳米复合相变材料制备及性能研究[J]. 太阳能学报, 2024, 45(4): 532-539.
TAN Q L, LIU H F, ZHANG M Y, et al.Preparation and properties of lauric acid/stearic acid/nanocomposite phase change materials[J]. Acta energiae solaris sinica, 2024, 45(4): 532-539.
[3] 方桂花, 赵茂森, 孙鹏博. 基于棕榈酸-硬脂酸/膨胀石墨定形复合相变储能材料的制备与表征[J]. 材料导报, 2023, 37(20): 186-192.
FANG G H, ZHAO M S, SUN P B.Preparation and characterization of a shape-stabilized composite phase change material based on palmitic-stearic acid/expanded graphite for energy storage[J]. Materials reports, 2023, 37(20): 186-192.
[4] 杜文清, 费华, 顾庆军, 等. 癸酸-石蜡二元低共熔复合相变材料的制备及性能研究[J]. 太阳能学报, 2021, 42(7): 251-256.
DU W Q, FEI H, GU Q J, et al.Preparation and properties of capric acid-paraffin binary low eutectic composite phase change materials[J]. Acta energiae solaris sinica, 2021, 42(7): 251-256.
[5] 吴照学, 汤俊超, 梁伟, 等. 适用于苏北地区日光温室的相变材料筛选与测试[J]. 太阳能学报, 2023, 44(9): 264-272.
WU Z X, TANG J C, LIANG W, et al.Screening and testing of suitable phase change materials for solar greenhouses in northern Jiangsu[J]. Acta energiae solaris sinica, 2023, 44(9): 264-272.
[6] SUN M Y, LIU T, SHA H N, et al.A review on thermal energy storage with eutectic phase change materials: Fundamentals and applications[J]. Journal of energy storage, 2023, 68: 107713.
[7] 侯俊英, 杨金星, 郝建军, 等. 十八醇/ZIF-8定形复合相变材料制备及其蓄热器模拟[J]. 太阳能学报, 2023, 44(11): 434-442.
HOU J Y, YANG J X, HAO J J, et al.Fabrication of octadecanol/zif-8 shape stablized composite phase change material and thermal simulation of heat accumulator[J]. Acta energiae solaris sinica, 2023, 44(11): 434-442.
[8] 白瑞雪, 刘松阳, 王梦晴, 等. 膨胀蛭石基复合相变储热材料的制备及性能研究[J]. 可再生能源, 2024, 42(2): 182-188.
BAI R X, LIU S Y, WANG M Q, et al.Preparation and properties of expanded vermiculite-based composites[J]. Renewable energy resources, 2024, 42(2): 182-188.
[9] TOPÇU İ B, BAYRAM M, USTAOĞLU A, et al. Innovative cementitious mortar incorporated with sepiolite based shape-stable phase change material for thermal controlling of buildings[J]. Construction and building materials, 2024, 426: 136124.
[10] JIANG J Y, JU S Y, WANG F J, et al.Cement-based materials incorporated with polyethylene glycol/sepiolite composite phase change materials: hydration, mechanical, and thermal properties[J]. Journal of sustainable cement-based materials, 2024, 13(2): 311-323.
[11] XIE N, GAO X N, ZHONG Y, et al.Enhanced thermal performance of Na2HPO4·12H2O composite phase change material supported by sepiolite fiber for floor radiant heating system[J]. Journal of building engineering, 2022, 56: 104747.
[12] 高天飞. 相变储能技术的基础理论和实践应用[J]. 太阳能学报, 2024, 45(2): 500.
GAO T F.Phase change energy storage technology and practice[J]. Acta energiae solaris sinica, 2024, 45(2): 500.
[13] 罗凯, 叶伟梁, 王艳, 等. 太阳能生活热水系统相变储能研究进展[J]. 太阳能学报, 2022, 43(5): 220-229.
LUO K, YE W L, WANG Y, et al.Research progress of phase change energy storage in solar domestic hot water system[J]. Acta energiae solaris sinica, 2022, 43(5): 220-229.
[14] ZHAO L J, ZHAO Y F, WEI D Y, et al.Hierarchical porous carbon fiber felt loaded with polyethylene glycol as hybrid phase change energy storage sheet for temperature-controlled logistics[J]. Journal of energy storage, 2024, 97: 112779.
[15] GB/T 50176—1993, 民用建筑热工设计规范[S].
GB/T 50176—1993,Thermal design code for civil building[S].
[16] 陈超, 凌浩恕, 于楠, 等. 相变材料蓄热系数的计算方法[J]. 太阳能学报, 2018, 39(8): 2267-2272.
CHEN C, LING H S, YU N, et al.Calculation method of heat storage coefficient of phase change material[J]. Acta energiae solaris sinica, 2018, 39(8): 2267-2272.