风电采暖高寒地区严寒并发匮风事件关联分析

李彬, 左剑, 苏盛, 石东源, 陈金富

太阳能学报 ›› 2025, Vol. 46 ›› Issue (7) : 450-457.

PDF(2762 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2762 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (7) : 450-457. DOI: 10.19912/j.0254-0096.tynxb.2024-1325
第二十七届中国科协年会学术论文

风电采暖高寒地区严寒并发匮风事件关联分析

  • 李彬1, 左剑2, 苏盛1, 石东源3, 陈金富3
作者信息 +

ASSOCIATION ANALYSIS OF CONCURRENT EXTREME COLD AND LOW‐WIND EVENTS IN HIGH‐COLD REGIONS WITH WIND‐POWERED HEATING

  • Li Bin1, Zuo Jian2, Su Sheng1, Shi Dongyuan3, Chen Jinfu3
Author information +
文章历史 +

摘要

为明确中国东北地区在严寒天气下并发匮风的概率和严重程度,采用当地1979—2022年间逐小时历史气象数据反演产生风电出力数据;按风电出力容量系数低于设定阈值识了匮风事件,重现2021年9月下旬造成大面积限电的匮风发电事件,并识别出2009年7月下旬持续7 d的长时持续匮风事件;分析匮风发电事件的年度次数、季节分布和持续时长;对采暖季匮风发电事件的分析表明,采暖季在低于-15气温条件下的匮风达300次,且采暖季匮风与寒潮有强关联性。

Abstract

In order to unveil the probability and severity of low wind power events during severe cold weather in northeastern China, hourly historical meteorological data from 1979 to 2022 were used to reconstruct wind power output data. The occurrence of low wind power events was identified on the basis of wind power output capacity factors falling below a designated threshold, thereby reproducing the low wind power event that resulted in widespread power restrictions in late September 2021. A long-term low wind power event lasting seven days in late July 2009 was also identified. The annual frequency, seasonal distribution, and duration of low wind power events were analyzed. A study of low wind power events during the heating season revealed 300 instances occurig at temperature below -15. Furthermore, the analysis demonstrated a strong correlation between low wind power during the heating season and cold waves occurrences.

关键词

匮风发电事件 / 电力系统可靠性 / 风力发电 / 寒潮 / 电力系统规划

Key words

low wind power event / power system reliability / wind power / cold wave / power system planning

引用本文

导出引用
李彬, 左剑, 苏盛, 石东源, 陈金富. 风电采暖高寒地区严寒并发匮风事件关联分析[J]. 太阳能学报. 2025, 46(7): 450-457 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1325
Li Bin, Zuo Jian, Su Sheng, Shi Dongyuan, Chen Jinfu. ASSOCIATION ANALYSIS OF CONCURRENT EXTREME COLD AND LOW‐WIND EVENTS IN HIGH‐COLD REGIONS WITH WIND‐POWERED HEATING[J]. Acta Energiae Solaris Sinica. 2025, 46(7): 450-457 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1325
中图分类号: TM614   

参考文献

[1] 中国家能源局. 国家能源局发布2024年全国电力工业统计数据 [EB/OL].(2025-01-21) https://www.nea.gov.cn/ 20250121/097bfd7c1cd3498897639857d86d5dac/c.html
CHINA N E A. National Energy Administration Released the2023 National Power Industry Statistics [EB/OL]. (2024-01-26) 2024-05-16. https://www.nea.gov.cn/2024-01/26/c_1310762246.htm.
[2] 薛禹胜, 雷兴, 薛峰, 等. 关于风电不确定性对电力系统影响的评述[J]. 中国电机工程学报, 2014, 34(29): 5029-5040.
XUE Y S, LEI X, XUE F, et al.A review on impacts of wind power uncertainties on power systems[J]. Proceedings of the CSEE, 2014, 34(29): 5029-5040.
[3] 贺彬, 任永峰, 贾伟青, 等. 储能MPC平抑分散式风电并网功率波动策略研究[J]. 太阳能学报, 2024, 45(6): 132-139.
HE B, REN Y F, JIA W Q, et al.Strategy of energy storage mpc to smooth grid-connected power fluctuation of distributed wind power[J]. Acta energiae solaris sinica, 2024,45(6): 132-139.
[4] 祝牧. 大型风电场群运行特性与优化控制研究[D].北京: 华北电力大学,2017.
ZHU M.Research on large scale wind farms operation characteristics and optimization control[D]. Beijing: North China Electric Power University, 2017.
[5] 张宁, 康重庆, 肖晋宇, 等. 风电容量可信度研究综述与展望[J]. 中国电机工程学报, 2015, 35(1): 82-94.
ZHANG N, KANG C Q, XIAO J Y, et al.Review and prospect of wind power capacity credit[J]. Proceedings of the CSEE, 2015, 35(1): 82-94.
[6] 黄棋悦, 严楠, 钟旭佳. 基于生成对抗网络的风电爬坡功率预测[J]. 太阳能学报, 2023, 44(1): 226-231.
HUANG Q Y, YAN N, ZHONG X J.Wind power ramping events prediction based on generative adversarial network[J]. Acta energiae solaris sinica, 2023, 44(1): 226-231.
[7] 余洋, 陈东阳, 王卜潇, 等. 基于IBSO-SDT的风电爬坡事件检测方法[J]. 太阳能学报, 2023, 44(9): 348-355.
YU Y, CHEN D Y, WANG B X, et al.Wind power ramp event detection method based on ibso-sdt[J]. Acta energiae solaris sinica, 2023, 44(9): 348-355.
[8] ZENG Z, ZIEGLER A D, SEARCHINGER T, et al.A reversal in global terrestrial stilling and its implications for wind energy production[J]. Nature climate change, 2019, 9(2): 164-170.
[9] KAPICA J, JURASZ J, CANALES F A, et al.The potential impact of climate change on European renewable energy droughts[J]. Renewable and sustainable energy reviews, 2024, 189: 114011.
[10] LLEDÓ L, BELLPRAT O, DOBLAS-REYES F J, et al. Investigating the effects of Pacific sea surface temperatures on the wind drought of 2015 over the United States[J]. Journal of geophysical research: atmospheres, 2018, 123(9): 4837-4849.
[11] 马晨晨, 吴斯旻. 火电缺煤,风电“看天吃饭”:东北巨大电力缺口如何填补[EB/OL].澎湃网, https: //www.thepaper.cn/newsDetail_forward_14716450, 2021
MA C C, WU S M. Thermal power lack of coal, wind power ' see the sky to eat ': how to fill the huge power gap in Northeast China[EB/OL]. Peng Pai Network, 2021. https://www.thepaper.cn/newsDetail_forward_14716450.
[12] WATTS D, DURÁN P, FLORES Y. How does El Niño Southern Oscillation impact the wind resource in Chile? A techno-economical assessment of the influence of El Niño and La Niña on the wind power[J]. Renewable energy, 2017, 103: 128-142.
[13] HANDSCHY M A, ROSE S, APT J.Is it always windy somewhere? Occurrence of low-wind-power events over large areas[J]. Renewable energy, 2017, 101: 1124-1130.
[14] LI B W, BASU S, WATSON S J, et al.Mesoscale modeling of a “dunkelflaute” event[J]. Wind energy, 2021, 24(1): 5-23.
[15] OTERO N, MARTIUS O, ALLEN S, et al.A copula-based assessment of renewable energy droughts across Europe[J]. Renewable energy, 2022, 201: 667-677.
[16] OHLENDORF N, SCHILL W P.Frequency and duration of low-wind-power events in Germany[J]. Environmental research letters, 2020, 15(8): 084045.
[17] ABDELAZIZ S, SPARROW S N, HUA W Q, et al.Assessing long-term future climate change impacts on extreme low wind events for offshore wind turbines in the UK exclusive economic zone[J]. Applied energy, 2024, 354: 122218.
[18] LIU F, WANG X M, SUN F B, et al.Wind resource droughts in China[J]. Environmental research letters, 2023, 18(9): 094015.
[19] GANGOPADHYAY A, SPARKS N J, TOUMI R, et al.Risk assessment of wind droughts over India[J]. Current science, 2022, 122(10): 1145.
[20] 严干贵, 赵阳, 杨玉龙, 等. 消纳风电预测偏差功率的电采暖负荷群运行调度策略[J]. 电力自动化设备, 2022, 42(7): 168-173.
YAN G G, ZHAO Y, YANG Y L, et al.Operation scheduling strategy of electric heating load group for wind power forecast deviation absorption[J]. Electric power automation equipment, 2022, 42(7): 168-173.
[21] 张文韬, 王秀丽, 李言, 等. 大规模风电并网下多区域互联系统热电综合调度模型[J]. 电网技术, 2018, 42(1): 154-161.
ZHANG W T, WANG X L, LI Y, et al.An analysis model of multi-area interconnected power systems with large-scale wind power involved in comprehensive heating and power system scheduling[J]. Power system technology, 2018, 42(1): 154-161.
[22] 戴慧珠, 陈默子, 王伟胜, 等. 中国风电发展现状及有关技术服务[J]. 中国电力, 2005, 38(1): 80-84.
DAI H Z, CHEN M Z, WANG W S, et al.The status of wind power development and technical supports in China[J]. Electric power, 2005, 38(1): 80-84.
[23] GB/T 21987—2017, 寒潮等级[S].
GB/T 21987—2017, Grade of cold wave[S].

基金

国家自然科学基金(51777081)

PDF(2762 KB)

Accesses

Citation

Detail

段落导航
相关文章

/