利用福建省平潭岛附近3座海上测风塔观测的7个台风个例资料,分析发现当测风塔位于台风前进方向左侧,风向呈逆时针变化,位于右侧风向呈顺时针变化。仅当台风中心经过测风塔时才会出现180°/30 min的转变特征。根据台风影响期间气压、风速、风向变化和台风路径距离测风塔远近,将台风影响期间分为前眼壁区、台风眼和后眼壁区3个时段计算其湍流强度、阵风系数、风垂直切变指数和风向变化,结果表明:所有时段湍流强度10 m高度最大;30 m以上湍流强度垂直变化不大,其中第1时段最小,为0.07~0.10;第2时段为0.09~0.12;第3时段差别较大。10 m高度阵风系数最大,其值为1.26~1.60;40~90 m阵风系数为1.20~1.45,其中第1时段最小为1.18~1.30,第3时段最大为1.12~1.45,第2时段大小居中为1.20~1.38。①号和④号测风塔第1时段和第2时段风主要来自海上,10~40 m风切变指数略大于40~90 m;第3时段风主要来自陆上,风切变指数略大于前两个时段。
Abstract
Using the data of 7 typhoon cases by 3 offshore masts near Pingtan in Fujian Province, the analysis shows that when the masts are located on the left side of the typhoon’s forward direction, the wind direction changes counterclockwise, and when the mast is located on the right side, the wind direction changes clockwise. 180°/30 min only occurs when the center of the typhoon passes the masts. According to the changes of air pressure, wind speed, wind direction and the distance of the typhoon path from the mast during the typhoon period, the turbulence intensity, gust coefficient; Wind vertical shear index and wind direction change were calculated in three periods,such as the front eye wall area, the typhoon eye and the rear eye wall area. The results show that the turbulence intensity is the largest at 10 m in all periods with a value of 0.10-0.19, and the turbulence intensity above 30 m has little vertical variation, and the first period is the smallest. It is 0.07-0.10, the second period was 0.09-0.12, there was a large difference in the third period. The gust coefficient is the highest at 10 m, with a value of 1.26-1.60, and 1.2-1.45 at 40-90 m, The minimum in the first period is 1.18-1.30, the maximum in the third period is 1.12-1.45, and the middle in the second period is 1.20-1.38. The wind shear index at 10-40 m during the first and second periods for wind measurement towers 1 and 2 is slightly higher than that of 40-90 m, because the wind mainly comes from the sea during the two periods. The wind shear index in the third period is slightly higher than that in the first and second periods, because the wind in the third period mainly comes from land.
关键词
风电场 /
台风 /
近地层风 /
湍流强度 /
阵风系数 /
风垂直切变
Key words
wind farm /
typhoon /
near-surface wind /
turbulence intensity /
gust coefficient /
wind vertical shear
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 朱蓉, 王阳, 向洋, 等. 中国风能资源气候特征和开发潜力研究[J]. 太阳能学报, 2021, 42(6): 409-418.
ZHU R, WANG Y, XIANG Y, et al.Stydy on climate characteristics and development potential of wind energy resources in China[J]. Acta energiae solaris sinica, 2021, 42(6): 409-418.
[2] 宋丽莉, 毛慧琴, 汤海燕, 等. 广东沿海近地层大风特性的观测分析[J]. 热带气象学报, 2004, 20(6): 731-736.
SONG L L, MAO H Q, TANG H Y, et al.Observation and analysis of gale characteristics in the surface layer along the coast of Guangdong Province[J]. Journal of tropical meteorology, 2004, 20(6): 731-736.
[3] 宋丽莉, 毛慧琴, 钱光明, 等. 热带气旋对风力发电的影响分析[J]. 太阳能学报, 2006, 27(9): 961-965.
SONG L L, MAO H Q, QIAN G M, et al.Analysis on the wind power by tropical cyclone[J]. Acta energiae solaris sinica, 2006, 27(9): 961-965.
[4] 班欣, 冯还岭, 祁欣, 等. 连云港沿海近地层湍流强度特征[J]. 气象科技, 2012, 40(2): 285-292.
BAN X, FENG H L, QI X, et al.Analysis of surface layer turbulence intensity along Lianyungang coastland[J]. Meteorological science and technology, 2012, 40(2): 285-292.
[5] 张容焱, 张秀芝, 杨校生, 等. 台风莫拉克(0908)影响期间近地层风特性[J]. 应用气象学报, 2012, 23(2): 184-194.
ZHANG R Y, ZHANG X Z, YANG X S, et al.Wind characteristics study in surface layer of typhoon Morakot(0908)[J]. Journal of applied meteorological science, 2012, 23(2): 184-194.
[6] 陈佳俊, 张明, 高梓淇, 等. 苏北区域台风外围风特性研究及对风电机组选型的影响[J]. 太阳能学报, 2022, 43(3): 411-418.
CHEN J J, ZHANG M, GAO Z Q, et al.Study on wind characteristics of typhoon periphery in northern Jiangsu province and its influence on wind turbine selection[J]. Acta energiae solaris sinica, 2022, 2022, 43(3): 411-418.
[7] 王旭, 黄鹏, 顾明. 台风“梅花”影响下近地风脉动特性研究[J]. 土木工程学报, 2013, 46(2): 54-61.
WANG X, HUANG P, GU M.Field measurement on wind characteristics near ground during typhoon ‘Muifa’[J]. China civil engineering journal, 2013, 46(2): 54-61.
[8] 宋丽莉, 毛慧琴, 黄浩辉, 等. 登陆台风近地层湍流特征观测分析[J]. 气象学报, 2005, 63(6): 915-921.
SONG L L, MAO H Q, HUANG H H, et al.Analysis on boundary layer turbulent features of landfalling typhoon[J]. Acta meteorologica sinica, 2005, 63(6): 915-921.
[9] 李波, 张星灿, 杨庆山, 等. 台风“苏力” 近地风场脉动特性实测研究[J]. 建筑结构学报, 2015, 36(4): 99-104.
LI B, ZHANG X C, YANG Q S, et al.Research on fluctuating wind characteristics near ground of typhoon ‘Soulik’by field measurement[J]. Journal of building structures, 2015, 36(4): 99-104.
[10] 宋丽莉, 吴战平, 秦鹏, 等. 复杂山地近地层强风特性分析[J]. 气象学报, 2009, 67(3): 452-460.
SONG L L, WU Z P, QIN P, et al.An analysis of the characteristics of strong winds in the surface layer over a complex terrain[J]. Acta meteorologica sinica, 2009, 67(3): 452-460.
[11] 张光智, 徐祥德, 王继志, 等. 采用外场观测试验资料对登陆台风 “黄蜂” 的风场及湍流特征的观测研究[J]. 应用气象学报, 2004, 15(增刊1): 110-115.
ZHANG G Z, XU X D, WANG J Z, et al.The characteristics of wind field and turbulence of landing typhoon “Fengfeng” were observed and studied by using field observation data[J]. Journal of applied meteorological science, 2004, 15(S1): 110-115.
[12] 张容焱, 张秀芝, 徐宗焕, 等. 台风影响下的正常湍流模型(NTM)设计[J]. 太阳能学报, 2014, 35(6): 1075-1079.
ZHANG R Y, ZHANG X Z, XU Z H, et al.Normal turbulence model(NTM) design under influence of typhoon[J]. Acta energiae solaris sinica, 2014, 35(6): 1075-1079.
[13] SPARKS P R, HUANG Z.Gust factors and surface-to-gradient wind-speed ratios in tropical cyclones[J]. Journal of wind engineering and industrial aerodynamics, 2001, 89(11/12): 1047-1058.
[14] SPARKS P R.Wind speeds in tropical cyclones and associated insurance losses[J]. Journal of wind engineering and industrial aerodynamics, 2003, 91(12/13/14/15): 1731-1751.
[15] HARPRE B R.Wind speed time averaging conversions for tropical cyclone conditions[C]//AMS 28th conference on Hurricanes and tropical Meteorology. Orlando, FL, USA, 2008.
[16] 肖仪清, 李利孝, 宋丽莉, 等. 基于近海海面观测的台风黑格比风特性研究[J]. 空气动力学学报, 2012, 30(3): 380-387, 399.
XIAO Y Q, LI L X, SONG L L, et al.Study on wind characteristics of typhoon Hagupit based on offshore sea surface measurements[J]. Acta aerodynamica sinica, 2012, 30(3): 380-387, 399.
[17] 李亚春, 武金岗, 谢志清, 等. 不同强风样本湍流特性参数的计算分析[J]. 应用气象学报, 2008, 19(1): 28-34.
LI Y C, WU J G, XIE Z Q, et al.Turbulent characteristic parameter of different strong wind samples[J]. Journal of applied meteorological science, 2008, 19(1): 28-34.
[18] GB/T 18710—2002, 风电场风能资源评估方法[S].
GB/T 18710—2002, Methodology of wind energy resource assessment for wind farm[S].
[19] DAVENPORT A G.Note on the distribution of the largest value of a random function with application to gust loading[J]. Proceedings of the Institution of Civil Engineers, 1964, 28(2): 187-196.
[20] GL Renewables Certification.IV Rules and guidelines industrial serices.guideline for the certification of offshore wind turbine[S]. Hamburg: GL Renewables Certification, 2012.
基金
福建省气象局(中国气象局海峡灾害天气重点开放实验室)开放式科研基金项(2022K01)