氨氢燃烧驱动的氨裂解制氢工艺分析及NOx排放研究

袁小雪, 刘伟, 刘斌, 康宗耀

太阳能学报 ›› 2025, Vol. 46 ›› Issue (11) : 154-162.

PDF(2000 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2000 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (11) : 154-162. DOI: 10.19912/j.0254-0096.tynxb.2024-1638

氨氢燃烧驱动的氨裂解制氢工艺分析及NOx排放研究

  • 袁小雪1, 刘伟1, 刘斌2, 康宗耀2
作者信息 +

ANALYSIS OF HYDROGEN PRODUCTION FROM AMMONIA CRACKING DRIVEN BY AMMONIA-HYDROGEN COMBUSTION AND STUDY ON NOx EMISSIONS

  • Yuan Xiaoxue1, Liu Wei1, Liu Bin2, Kang Zongyao2
Author information +
文章历史 +

摘要

利用Aspen Plus建立以氨燃烧为能量来源的氨分解制氢模型,分析影响氨分解率的因素,并详细研究氨燃烧时的绝热火焰温度及NOx的排放情况,最后将以氨燃烧和以氢燃烧为能量来源的两种系统进行比较。结果显示,氨分解主要发生在分解器入口处,入口提供的热量可显著提高分解效率。氨分解率与反应器压强呈负相关,与温度呈正相关。以氨燃烧为能量来源的系统相比于以氢燃烧为能量来源的系统NO的排放下降了约50%。

Abstract

Aspen Plus is used to establish an ammonia decomposition model for hydrogen production using ammonia combustion as the energy source, to analyze the factors affecting the ammonia decomposition rate, and to study the adiabatic flame temperature and NOx emission during ammonia combustion in detail. Finally, the two systems using ammonia combustion and hydrogen combustion as the energy source were compared. The results show that ammonia decomposition mainly occurs at the inlet of the decomposition reactor, and the heat provided at the inlet can significantly improve the decomposition efficiency. The ammonia decomposition rate is negatively correlated with reactor pressure and positively correlated with temperature. Systems that use ammonia combustion as an energy source reduce NO emissions by as much as 50% about compared to systems that use hydrogen combustion as an energy source.

关键词

/ 氢生产 / 燃烧室 / 工艺设计 / 流程分析 / NOx排放

Key words

ammonia / hydrogen production / combustion chambers / process design / process analysis / NOx emission

引用本文

导出引用
袁小雪, 刘伟, 刘斌, 康宗耀. 氨氢燃烧驱动的氨裂解制氢工艺分析及NOx排放研究[J]. 太阳能学报. 2025, 46(11): 154-162 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1638
Yuan Xiaoxue, Liu Wei, Liu Bin, Kang Zongyao. ANALYSIS OF HYDROGEN PRODUCTION FROM AMMONIA CRACKING DRIVEN BY AMMONIA-HYDROGEN COMBUSTION AND STUDY ON NOx EMISSIONS[J]. Acta Energiae Solaris Sinica. 2025, 46(11): 154-162 https://doi.org/10.19912/j.0254-0096.tynxb.2024-1638
中图分类号: TQ534   

参考文献

[1] 韩利, 李琦, 冷国云, 等. 氢能储存技术最新进展[J]. 化工进展, 2022, 41(S1): 108-117.
HAN L, LI Q, LENG G Y, et al.Latest research progress of hydrogen energy storage technology[J]. Chemical industry and engineering progress, 2022, 41(S1): 108-117.
[2] 黄靖钟, 刘斌, 潘良明, 等. 与核反应堆耦合的新型制绿氨模型[J]. 太阳能学报, 2024, 45(4): 365-372.
HUANG J Z, LIU B, PAN L M, et al.A novel model of green ammonia production coupled with nuclear reactor[J]. Acta energiae solaris sinica, 2024, 45(4): 365-372.
[3] 李亮荣, 彭建, 付兵, 等. 碳中和愿景下绿色制氢技术发展趋势及应用前景分析[J]. 太阳能学报, 2022, 43(6): 508-520.
LI L R, PENG J, FU B, et al.Development trend and application prospect of green hydrogen production technologies under carbon neutrality vision[J]. Acta energiae solaris sinica, 2022, 43(6): 508-520.
[4] 黄靖钟, 刘斌, 潘良明, 等. 与核反应堆耦合的新型制绿氨模型[J]. 太阳能学报, 2024, 45(4): 365-372.
HUANG J Z, LIU B, PAN L M, et al.A novel model of green ammonia production coupled with nuclear reactor[J]. Acta energiae solaris sinica, 2024, 45(4): 365-372.
[5] 刘斌, 康宗耀, 王欣, 等. 分段供热策略提高氨分解率和能量利用效率的研究[J]. 储能科学与技术, 2025, 14(1): 175-182.
LIU B, KANG Z Y, WANG X, et al.Study of a segmented heating strategy to improve ammonia decomposition rate and energy utilization efficiency[J]. Energy storage science and technology, 2025, 14(1): 175-182.
[6] 梁前超, 赵建锋, 梁一帆, 等. 储氢技术发展现状[J]. 海军工程大学学报, 2022, 34(3): 92-101.
LIANG Q C, ZHAO J F, LIANG Y F, et al.Progress in hydrogen storage technology[J]. Journal of Naval University of Engineering, 2022, 34(3): 92-101.
[7] ZHAI L L, LIU S Z, XIANG Z H.Ammonia as a carbon-free hydrogen carrier for fuel cells: a perspective[J]. Industrial chemistry & materials, 2023, 1(3): 332-342.
[8] DEVKOTA S, SHIN B J, MUN J H, et al.Process design and optimization of onsite hydrogen production from ammonia: Reactor design, energy saving and NOx control[J]. Fuel, 2023, 342: 127879.
[9] 王运, 蒙飞, 张超, 等. 氨分解制氢储能系统容量对电力系统性能的影响[J]. 储能科学与技术, 2024, 13(2): 589-597.
WANG Y, MENG F, ZHANG C, et al.Effect of ammonia decomposition hydrogen production and energy storage system capacity on performance of power system[J]. Energy storage science and technology, 2024, 13(2): 589-597.
[10] 刘祥涛, 王国昌, 司济沧, 等. NH3/H2掺混MILD燃烧及NOx排放特性的数值模拟[J]. 洁净煤技术, 2024, 30(8): 107-116.
LIU X T, WANG G C, SI J C, et al.Numerical study on the combustion and emission characteristics of premixed NH3/H2 jet flame[J]. Clean coal technology, 2024, 30(8): 107-116.
[11] 桂莹. NH3部分裂解对其均质及非预混自燃特性的影响研究[J]. 可再生能源, 2023, 41(4): 434-441.
GUI Y.Effects of NH3 partial cracking on its homougeneous and non-premixed autoignition characteristics[J]. Renewable energy resources, 2023, 41(4): 434-441.
[12] 苏嘉明, 李先春, 李艳鹰, 等. 稀薄氨气的燃烧特性及动力学研究[J]. 可再生能源, 2021, 39(1): 13-18.
SU J M, LI X C, LI Y Y, et al.Study on combustion characteristics and kinetics of lean ammonia[J]. Renewable energy resources, 2021, 39(1): 13-18.
[13] 王凯卉, 刘斌, 折晓会, 等. 氨氢混合燃烧在旋流燃烧器中的动力学特性与NOx减排机理研究[J]. 发电技术, 2025, 46(1): 171-179.
WANG K H, LIU B, ZHE X H, et al.Kinetic characterization and NOx reduction mechanism of mixed AmmoniaHydrogen combustion in cyclone combustor[J]. Power generation technology, 2025, 46(1): 171-179.
[14] AHMAD SHER A, AHMAD N, SATTAR M, et al.Computational analysis of multi-fuel micro-gas turbine annular combustion chamber[J]. Journal of thermal analysis and calorimetry, 2024, 149(8): 3317-3329.
[15] WANG Z, ZHANG T Y, WANG D, et al.A comparative study on the premixed ammonia/hydrogen/air combustion with spark ignition and turbulent jet ignition[J]. Energy, 2024, 307: 132814.
[16] SAHA A, DIREDA N, SOBHANI S.Enhancing flame stability in porous media burners via topological tuning[J]. Proceedings of the combustion institute, 2024, 40(1/2/3/4): 105703.
[17] GUO C X, GUAN Z Y, ZHOU J J, et al.Molecular insights into improved oxygen adsorption: Ag+ and Ce3+ doping in Li-LSX for air separation[J]. Applied surface science, 2024, 663: 160186.
[18] LIN L, TIAN Y, SU W B, et al.Techno-economic analysis and comprehensive optimization of an on-site hydrogen refuelling station system using ammonia: hybrid hydrogen purification with both high H2 purity and high recovery[J]. Sustainable energy & fuels, 2020, 4(6): 3006-3017.
[19] DI CARLO A, VECCHIONE L, DEL PRETE Z.Ammonia decomposition over commercial Ru/Al2O3 catalyst: an experimental evaluation at different operative pressures and temperatures[J]. International journal of hydrogen energy, 2014, 39(2): 808-814.
[20] GREENBLATT D, TIAN L, LINDSTEDT R P.The impact of hydrogen substitution by ammonia on low- and high-temperature combustion[J]. Combustion and flame, 2023, 257: 112733.
[21] DEVKOTA S, SHIN B J, MUN J H, et al.Process design and optimization of onsite hydrogen production from ammonia: Reactor design, energy saving and NOx control[J]. Fuel, 2023, 342: 127879.
[22] HAYAKAWA A, HIRANO Y, OKAFOR E C, et al.Experimental and numerical study of product gas characteristics of ammonia/air premixed laminar flames stabilized in a stagnation flow[J]. Proceedings of the combustion institute, 2021, 38(2): 2409-2417.
[23] ZHU Y X, CURRAN H J, GIRHE S, et al.The combustion chemistry of ammonia and ammonia/hydrogen mixtures: a comprehensive chemical kinetic modeling study[J]. Combustion and flame, 2024, 260: 113239.
[24] OTCHERE P, PAN J F, FAN B W, et al.Mixture formation and combustion process of a biodiesel fueled direct injection rotary engine (DIRE) considering injection timing, spark timing and equivalence ratio-CFD study[J]. Energy conversion and management, 2020, 217: 112948.
[25] LIU B, ZHANG Z H, YANG S C, et al.Experimental and chemical kinetic study for the combustion of ammonia-hydrogen mixtures[J]. Fuel, 2024, 371: 131850.
[26] HUANG J L, XIA S J, CHEN L G.Optimal configurations of ammonia decomposition reactor with minimum power consumption and minimum heat transfer rate[J]. Energy, 2024, 293: 130636.

基金

河北省科学院高层次人才培养与资助项目(2024G07)

PDF(2000 KB)

Accesses

Citation

Detail

段落导航
相关文章

/