为实现光储直流微电网的柔性制氢以及提高系统的经济性,首先结合光伏阵列、储能电池和电解槽的运行特性,提出一种基于直流母线电压信号的系统层面协调控制策略,以实现电解制氢装置“荷随源动”的柔性制氢。其次,在此控制策略的基础上,建立容量优化配置模型,采用麻雀搜索算法(SSA)以系统成本最小化为优化目标进行容量配置优化,并结合具体光伏制氢工程项目数据进行算例分析与经济性分析。最后,根据所提控制策略搭建仿真模型,通过仿真验证所提控制策略的正确性。
Abstract
To achieve flexible hydrogen production and improve the economic performance of a photovoltaic-storage DC microgrid, a system-level coordinated control strategy based on the DC bus voltage signal is first proposed, considering the operating characteristics of photovoltaic arrays, energy storage batteries, and electrolyzers, to realize flexible hydrogen production with the "load-following-source" mode for the electrolytic hydrogen production device. Secondly, based on this control strategy, a capacity optimization configuration model is established, and the sparrow search algorithm is used to optimize the capacity configuration with the goal of minimizing system cost. A case study analysis and economic analysis are then performed using data from an actual photovoltaic hydrogen production engineering project. Finally, a simulation model is established according to the proposed control strategy, and the correctness of the proposed control strategy is verified through simulation.
关键词
太阳能 /
电解槽 /
直流微电网 /
氢气生产 /
调度 /
容量配置
Key words
solar energy /
electrolytic cells /
DC microgrid /
hydrogen production /
scheduling /
capacity configuration
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘胜永. 基于风/光发电系统的储能系统建模与控制[D]. 合肥: 合肥工业大学,2016.
LIU S Y.Modeling and control of the energy storage system base on wind/PV power generation[D]. Hefei: Hefei University of Technology, 2016.
[2] 赵宇洋, 赵钰欢, 郭英军, 等. 离网型风光氢储系统容量配置与控制优化[J]. 太阳能学报, 2024, 45(7): 50-59.
ZHAO Y Y, ZHAO Y H, GUO Y J, et al.Capacity configuration and control optimization of off-grid wind solar hydrogen storage system[J]. Acta energiae solaris sinica, 2024, 45(7): 50-59.
[3] 白树华. 风光氢联合式独立发电系统应用研究[D]. 重庆: 重庆大学, 2007.
BAI S H.Application research of the wind solar hydrogen consociation type independent generates system[D]. Chongqing: Chongqing University, 2007.
[4] CANO A, JURADO F, SÁNCHEZ H, et al. Sizing and energy management of a stand-alone PV/hydrogen/battery-based hybrid system[C]// International Symposium on Power Electronics Power Electronics, Electrical Drives, Automation and Motion. Sorrento, Italy, 2012: 969-973.
[5] 王侃宏, 赵政通, 刘欢, 等. 基于HOMER和SA-PSO算法的风光氢储系统的优化匹配[J]. 水电能源科学, 2020, 38(5): 207-210.
WANG K H, ZHAO Z T, LIU H, et al.Optimization matching analysis of wind-photovoltaic-hydrogen-storage system based on HOMER and SA-PSO algorithm[J]. Water resources and power, 2020, 38(5): 207-210.
[6] 邵志芳, 吴继兰. 基于动态电价风光电制氢容量配置优化[J]. 太阳能学报, 2020, 41(8): 227-235.
SHAO Z F, WU J L.Capacity configuration optimization of hydrogen production from wind and PV power based on dynamic electricity price[J]. Acta energiae solaris sinica, 2020, 41(8): 227-235.
[7] 丁艳双. 直流微电网的优化配置与协调运行研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
DING Y S.Research on optimal configuration and coordinated operation of DC microgrid[D]. Harbin: Harbin Institute of Technology, 2017.
[8] 孙浩, 吴维宁, 陈丽杰, 等. 新能源电解水制氢技术发展研究综述[J/OL]. 电源学报, https:/ink.cnki.net/urlid/12.1420.TM.20240123.1730.002.
SUN H, WU W N, CHEN L J, et al. Review on the development of new energy electrolytic water hydrogen production technology[J/OL]. Journal of power supply, https:/ink.cnki.net/urlid/12.1420.TM.20240123.1730.002.
[9] 马晓锋, 张舒涵, 何勇, 等. PEM电解水制氢技术的研究现状与应用展望[J]. 太阳能学报, 2022, 43(6): 420-427.
MA X F, ZHANG S H, HE Y, et al.Research status and application prospect of PEM electrolysis water technology for hydrogen production[J]. Acta energiae solaris sinica, 2022, 43(6): 420-427.
[10] 李霞林, 郭力, 王成山, 等. 直流微电网关键技术研究综述[J]. 中国电机工程学报, 2016, 36(1): 2-17.
LI X L, GUO L, WANG C S, et al.Key technologies of DC microgrids:an overview[J]. Proceedings of the CSEE, 2016, 36(1): 2-17.
[11] NASSER M, MEGAHED T F, OOKAWARA S, et al.A review of water electrolysis-based systems for hydrogen production using hybrid/solar/wind energy systems[J]. Environmental science and pollution research, 2022, 29(58): 86994-87018.
[12] 杨永恒, 周克亮. 光伏电池建模及MPPT控制策略[J]. 电工技术学报, 2011, 26(增刊1): 229-234.
YANG Y H, ZHOU K L.Photovoltaic cell modeling and MPPT control strategy[J]. Transactions of China Electrotechnical Society, 2011, 26(S1): 229-234.
[13] ZHANG Y, WEI W.Decentralised coordination control strategy of the PV generator, storage battery and hydrogen production unit in islanded AC microgrid[J]. IET renewable power generation, 2020, 14(6): 1053-1062.
[14] 代丽, 王君瑞, 谭露, 等. 基于自适应下垂控制的光储直流微网控制策略研究[J]. 太阳能学报, 2024, 45(8): 154-163.
DAI L, WANG J R, TAN L, et al.Research on control strategy of PV storage DC microgrid based on adaptive droop control[J]. Acta energiae solaris sinica, 2024, 45(8): 154-163.
[15] GARCÍA CLÚA J G, DE BATTISTA H, MANTZ R J. Control of a grid-assisted wind-powered hydrogen production system[J]. International journal of hydrogen energy, 2010, 35(11): 5786-5792.
[16] 于芃, 周玮, 孙辉, 等. 用于风电功率平抑的混合储能系统及其控制系统设计[J]. 中国电机工程学报, 2011, 31(17): 127-133.
YU P, ZHOU W, SUN H, et al.Hybrid energy storage system and control system design for wind power balancing[J]. Proceedings of the CSEE, 2011, 31(17): 127-133.
[17] 柳清扬. 含风光储的直流微网功率协调控制策略研究[D]. 沈阳: 沈阳工业大学, 2023.
LIU Q Y.Research on power coordinated control strategy for DC microgrid with wind and solar energy storage[D]. Shenyang: Shenyang University of Technology, 2023.
[18] TIJANI A S, ABDUL GHANI M F, ABDOL RAHIM A H, et al. Electrochemical characteristics of (PEM) electrolyzer under influence of charge transfer coefficient[J]. International journal of hydrogen energy, 2019, 44(50): 27177-27189.
[19] VIKTORSSON L, HEINONEN J T, SKULASON J B, et al.A step towards the hydrogen economy: a life cycle cost analysis of a hydrogen refueling station[J]. Energies, 2017, 10(6): 763.
[20] 赖钧杰, 文小玲, 张淇, 等. 基于改进麻雀搜索算法的直流微电网容量优化配置[J]. 太阳能学报, 2023, 44(8): 157-163.
LAI Y J, WEN X L, ZHANG Q, et al.Capacity optimization configuration of DC microgrid based on improved sparrow search algorithm[J]. Acta energiae solaris sinica, 2023, 44(8): 157-163.
基金
安徽省自然科学基金青年项目(2208085QE165); 中央高校基本科研业务费专项资金(JZ2021HGQA0194); 高等学校学科创新引智计划(BP0719039)