针对传统地区电网调度中不同发电主体与负荷之间因火电机组深度调峰成本分摊导致的利益冲突问题,提出一种计及风光消纳与负荷联盟博弈的火电机组深度调峰成本分摊策略。为提高风光消纳和火电企业主动参与深度调峰的积极性,引入基于Shapley值法的成本分摊机制进行策略研究。首先,建立一个含火电厂、风电场、光伏电站和抽水蓄能电站等多供能主体的优化调度模型,该模型以系统总调峰成本最小为优化目标。其次,根据火电机组调峰市场出清结果计算边际调峰成本。仿真实例表明,利用Shapley值法对联盟成员进行调峰成本的分摊,用户侧主体产生的调峰量化成本实际值的占比与按用电量分摊的占比同各自所需分摊的边际调峰成本实际值相比,相对差值分别为-2.97%、-3.25%、-2.38%和-0.78%、-26.85%、7.58%,平均绝对误差(MAE)分别为2.37%和13.88%,下降11.51个百分点;风光侧分别从0.6~1.6倍和0.0~2.0倍参与并网,最后根据调峰效应进行各主体调峰成本分摊,得出更加公平合理的风光消纳同火电机组深度调峰的成本分摊策略。
Abstract
Traditional regional power grid scheduling often faces conflicts of interest between different power generation entities and loads due to the cost allocation of deep peak regulation for thermal power units. To address this issue,this paper proposes a deep peak regulation cost allocation strategy for thermal power units, which incorporates wind and solar power accommodation as well as a load alliance game mechanism. To enhance the participation incentives of wind, solar, and thermal power enterprises for participating in deep peak regulation, a Shapley value-based cost allocation mechanism is introduced for strategic analysis. First, an optimal scheduling model is developed, which incorporates thermal power plants, wind farms, photovoltaic power stations, and pumped storage stations, aiming to minimize the total system peak regulation cost. The model is constructed with the objective of minimizing the system-wide cost incurred by peak regulation operations. Then, the marginal peak regulation cost is calculated based on the thermal power unit market clearing results. Simulation results demonstrate that applying the Shapley value method to allocate peak-shaving costs among alliance members results in actual cost shares for user-side entities that closely align with their respective marginal peak-shaving costs. Compared to the traditional allocation method based on electricity consumption, the relative deviations are -2.97%,-3.25%, and -2.38% versus -0.78%, -26.85%, and 7.58%, respectively. The corresponding mean absolute errors (MAEs) are 2.37% and 13.88%, indicating a reduction of 11.51 percentage points. Furthermore, by varying the grid-connected capacity multiples of wind and solar generation from 0.6 to 1.6 and 0.0 to 2.0, respectively, the corresponding peak shaving effects and the cost allocation for each participating entity in deep peak regulation are analyzed. The results provide insights into developing a more equitable and rational cost-sharing strategy for wind and solar power integration and the deep peak regulation of thermal power units.
关键词
火力发电厂 /
可再生能源 /
博弈论 /
深度调峰 /
成本分析
Key words
power plants /
renewable energy resources /
game theory /
deep peak regulation /
cost benefit analysis
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 舒印彪, 张正陵, 汤涌, 等. 新型电力系统构建的若干基本问题[J]. 中国电机工程学报, 2024, 44(21): 8327-8341.
SHU Y B, ZHANG Z L, TANG Y, et al.Fundamental issues of new-type power system construction[J]. Proceedings of the CSEE. 2024, 44(21): 8327-8341.
[2] 邵桂萍, 许洪华.可再生能源综合系统现状与未来发展趋势研究[J].太阳能, 2024(7): 127-132.
SHAO G P, XU H H.Research on present situation and future development trend of renewable energy integrated system[J]. Solar energy, 2024(7): 127-132.
[3] 刘学, 刘硕, 于松泰, 等. 面向新型电力系统灵活性提升的调峰容量补偿机制设计[J]. 电网技术, 2023, 47(1): 155-163.
LIU X, LIU S, YU S T, et al.Peak load regulation capacity compensation mechanism for new power system flexibility enhancement[J]. Power system technology, 2023, 47(1): 155-163.
[4] 邢振中. 火力发电机组深度调峰技术研究[D]. 北京: 华北电力大学, 2013.
XING Z Z.Technology research on depth peak load cycling of thermal power generator units[D]. Beijing: North China Electric Power University, 2013.
[5] YUE X Y, LIAO S Y, XU J, et al.Collaborative optimization of renewable energy power systems integrating electrolytic aluminum load regulation and thermal power deep peak shaving[J]. Applied energy, 2024, 373: 123869.
[6] YANG L J, ZHOU N C, ZHOU G P, et al.An accurate ladder-type ramp rate constraint derived from field test data for thermal power unit with deep peak regulation[J]. IEEE transactions on power systems, 2024, 39(1): 1408-1420.
[7] 喻心, 王德林, 孙超, 等. 不同调峰深度下火电机组的环境经济调度优化[J]. 太阳能学报, 2023, 44(6): 152-160.
YU X, WANG D, SUN C, et al.Environmental economic dispatch optimization of thermal power units at different peak-load regulation depths[J]. Acta energiae solaris sinica, 2023, 44(6): 152-160.
[8] 王佳惠, 牛玉广, 陈玥, 等. 计及火电深度调峰的高比例可再生能源电力系统日前优化调度研究[J]. 太阳能学报, 2023, 44(1): 493-499.
WANG J H, NIU Y G, CHEN Y, et al.Research on day-ahead optimal dispatching of high-proportion renewable energy power system considering deep peak load regulation of thermal power[J]. Acta energiae solaris sinica, 2023, 44(1): 493-499.
[9] 崔杨, 安宁, 付小标, 等. 考虑风电消纳与火-储深度调峰的系统优化调度及补偿费用分摊策略[J]. 电力自动化设备, 2023, 43(5): 86-95.
CUI Y, AN N, FU X B, et al.Optimal scheduling of system and compensation cost sharing strategy considering wind power consumption and thermal-storage deep peak shaving[J]. Electric power automation equipment, 2023, 43(5): 86-95.
[10] 李英量, 董志伟, 白博旭, 等. 含风电并网的源荷双层机组优化组合模型[J]. 太阳能学报, 2024, 45(3): 399-407.
LI Y L, DONG Z W, BAI B X, et al.Optimal combination model of two-layer source-load unit with wind power grid connection[J]. Acta energiae solaris sinica, 2024, 45(3): 399-407.
[11] 贾曦, 夏清, 陈启鑫, 等. 基于发电有效容量成本的电价机制[J]. 电力系统自动化, 2013, 37(8): 6-13.
JIA X, XIA Q, CHEN Q X, et al.Electricity pricing mechanism based on effective capacity cost of power generation[J]. Automation of electric power systems, 2013, 37(8): 6-13.
[12] 何洋, 胡军峰, 闫志涛, 等. 大规模风电入网辅助服务成本补偿机制研究[J]. 电网技术, 2013, 37(12): 3552-3557.
HE Y, HU J F, YAN Z T, et al.Compensation mechanism for ancillary service cost of grid-integration of large-scale wind farms[J]. Power system technology, 2013, 37(12): 3552-3557.
[13] 林俐, 田欣雨. 基于火电机组分级深度调峰的电力系统经济调度及效益分析[J]. 电网技术, 2017, 41(7): 2255-2263.
LIN L, TIAN X Y.Analysis of deep peak regulation and its benefit of thermal units in power system with large scale wind power integrated[J]. Power system technology, 2017, 41(7): 2255-2263.
[14] 耿建, 程海花, 张凯锋, 等. 风电调度接纳成本的等电量顺负荷计算方法及分析[J]. 电力系统自动化, 2017, 41(20): 32-37, 132.
GENG J, CHENG H H, ZHANG K F, et al.Method and analysis of balancing cost calculation of wind power based on load-following transform[J]. Automation of electric power systems , 2017, 41(20): 32-37, 132.
[15] 陈晓榕, 江岳文. 风电波动成本分摊方法[J]. 电力自动化设备, 2020, 40(11): 99-106.
CHEN X R, JIANG Y W.Wind power variability cost allocation method[J]. Electric power automation equipment, 2020, 40(11): 99-106.
[16] 赵贵鑫. 高风电渗透率灵活电力系统的调峰成本测算与分摊方法[D]. 北京: 华北电力大学, 2021.
ZHAO G X.Peak-shaving cost estimation and ailocation method for flexible power system with high wind power penetration rate[D]. Beijing: North China Electric Power University, 2021.
[17] 陈长升. 风电的系统成本分析及分段价值发现研究[D]. 南京: 东南大学, 2015.
CHEN C S.Research on system cost and block value of wind power[D]. Nanjing: Southeast University, 2015.
[18] WU W L, ZHU J Z, CHEN Y X, et al.Modified shapley value-based profit allocation method for wind power accommodation and deep peak regulation of thermal power[J]. IEEE transactions on industry applications, 2023, 59(1): 276-288.
[19] 陈伟, 刘文翰, 魏占宏, 等. 计及需求响应的光热电站参与深度调峰的分层优化调度策略[J]. 太阳能学报, 2024, 45(3): 579-590.
CHEN W, LIU W H, WEI Z H, et al.Hierarchical optimal scheduling strategy for concentrating solar power participating in deep peak shaving considering demand response[J]. Acta energiae solaris sinica, 2024, 45(3): 579-590.
[20] 叶伦, 姚建刚, 杨胜杰, 等. 含高比例可再生能源电力系统的调峰成本量化与分摊模型[J]. 电力系统自动化, 2022, 46(15): 20-28.
YE L, YAO J G, YANG S J, et al.Quantification and allocation model of peak regulation cost for power system with high proportion of renewable energy[J]. Automation of electric power systems, 2022, 46(15): 20-28.
基金
河南省科技攻关项目(222102240072)