为实现综合能源系统中氢能的多元化利用,构建考虑燃气机组动态掺氢和灵活碳捕集耦合电转气的含氢多能耦合综合能源系统;并基于碳捕集、碳交易和需求响应提出源荷协同降碳策略,充分挖掘系统的低碳经济性。首先,建立燃气机组掺氢和灵活碳捕集等模型,构建以氢能为核心的多能耦合模型;其次,构建荷侧需求响应模型实现电热负荷的“削峰填谷”,并结合阶梯碳交易机制和碳捕集设备实现源荷协同降碳,进一步挖掘系统的低碳潜能;最后,以经济性最优为目标,建立优化调度模型。通过设置不同情景进行对比,验证所提优化调度模型可有效提升可再生能源消纳水平,实现源荷协同互补,提高系统的低碳、经济效益。
Abstract
To achieve diversified utilization of hydrogen in the integrated energy system, a hydrogen-based multi-energy coupling integrated energy system, considering dynamic hydrogen blending in gas turbine units and flexible carbon capture coupled with power-to-gas technology, has been developed. Based on carbon capture, carbon trading, and demand response, a source-load coordinated carbon reduction strategy is proposed to fully explore the system’s low-carbon economic potential. Firstly, models for hydrogen blending in gas turbines and flexible carbon capture are developed, forming a multi-energy coupling model centered on hydrogen energy. Secondly, a load-side demand response model is constructed to achieve peak shaving and valley filling of electric-thermal loads. This is combined with a tiered carbon trading mechanism and carbon capture equipment to achieve source-load coordinated carbon reduction, further exploiting the system’s low-carbon potential. Finally, an optimization scheduling model is established with the objective of minimizing the total operational costs of the system. By comparing various scenarios for comparison, the proposed optimization scheduling model is demonstrated to effectively improve the renewable energy integration, realize source-load complementary coordination, and enhance the system’s low-carbon and economic benefits.
关键词
氢能 /
碳捕集 /
综合能源系统 /
需求响应 /
碳交易 /
低碳 /
源荷互补
Key words
hydrogen /
carbon capture /
integrated energy system /
demand response /
carbon trading /
low-carbon /
multi-source and load complementation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806-2819.
ZHANG Z G, KANG C Q.Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42(8): 2806-2819.
[2] 邓钰龙, 李春燕, 邵常政, 等. 电热气氢综合能源系统随机优化调度[J]. 太阳能学报, 2023, 44(11): 522-529.
DENG Y L, LI C Y, SHAO C Z, et al.Stochastic optimal scheduling of integrated electric-heat-gas-hydrogen energy system[J]. Acta energiae solaris sinica, 2023, 44(11): 522-529.
[3] 梁宁, 缪猛, 徐慧慧, 等. 考虑绿证-碳交易机制的综合能源系统双层优化调度[J]. 太阳能学报, 2024, 45(7): 312-322.
LIANG N, MIAO M, XU H H, et al.Bi-level optimal scheduling of integrated energy system considering green certificates-carbon emission trading mechanism[J]. Acta energiae solaris sinica, 2024, 45(7): 312-322.
[4] 骆钊, 王菁慧, 王华, 等. 考虑碳捕集和电转气的综合能源系统优化调度[J]. 电力自动化设备, 2023, 43(12): 127-134.
LUO Z, WANG J H, WANG H, et al.Optimal scheduling of integrated energy system considering carbon capture and power-to-gas[J]. Electric power automation equipment, 2023, 43(12): 127-134.
[5] GAO J W, MENG Q C, LIU J T, et al.Thermoelectric optimization of integrated energy system considering wind-photovoltaic uncertainty, two-stage power-to-gas and ladder-type carbon trading[J]. Renewable energy, 2024, 221: 119806.
[6] 王辉, 周珂锐, 吴作辉, 等. 含电转气和碳捕集耦合的综合能源系统多时间尺度优化调度[J]. 中国电力, 2024, 57(8): 214-226.
WANG H, ZHOU K R, WU Z H, et al.Multi-time scale optimal scheduling of integrated energy system coupling power-to-gas and carbon capture system[J]. Electric power, 2024, 57(8): 214-226.
[7] YI T, ZHANG C M.Scheduling optimization of a wind power-containing power system considering the integrated and flexible carbon capture power plant and P2G equipment under demand response and reward and punishment ladder-type carbon trading[J]. International journal of greenhouse gas control, 2023, 128: 103955.
[8] 刘超广, 马贵阳, 孙东旭. 氢气管输技术研究进展[J]. 太阳能学报, 2023, 44(1): 451-458.
LIU C G, MA G Y, SUN D X.Research progress for technology of hydrogen transportation by pipeline[J]. Acta energiae solaris sinica, 2023, 44(1): 451-458.
[9] 栗然, 伊连增, 卫元晖, 等. 基于信息间隙决策理论含储氢的综合能源系统优化调度[J/OL]. 华北电力大学学报(自然科学版), 2024: 1-13. (2024-07-17). https://kns.cnki.net/KCMS/detail/detail.aspx filename=HBDL20240712001&dbname=CJFD&dbcode=CJFQ.
LI R, YI L Z, WEI Y H, et al. Optimal scheduling of integrated energy system with hydrogen storage based on information gap decision theory[J/OL]. Journal of North China Electric Power University (natural science edition), 2024: 1-13. (2024-07-17). https://kns.cnki.net/KCMS/detail/detail.aspx filename=HBDL20240712001&dbname=CJFD&dbcode=CJFQ.
[10] 张林垚, 吴桂联, 倪识远, 等. 考虑参数自适应阶梯碳交易的含混氢: 碳捕集耦合的农村综合能源系统优化调度[J]. 电力科学与技术学报, 2024, 39(3): 228-241.
ZHANG L Y, WU G L, NI S Y, et al.Optimal scheduling of an integrated rural energy system with coupled hybrid hydrogen-carbon capture considering parameter adaptive stepped carbon trading[J]. Journal of electric power science and technology, 2024, 39(3): 228-241.
[11] 邓倩文, 李奇, 邱宜彬, 等.考虑多类型灵活性资源联合运行的综合能源系统优化配置方法[J/OL]. 上海交通大学学报, 2024: 1-24.(2024-03-15). https://link.cnki.net/doi/10.16183/j.cnki.jsjtu.2023.457.
DENG Q W, LI Q, QIU Y B, et al.Optimal allocation method of integrated energy system considering joint operation of multi-type flexible resources[J/OL]. Journal of Shanghai Jiao Tong University, 2024: 1-24.(2024-03-15). https://link.cnki.net/doi/10.16183/j.cnki.jsjtu.2023.457.
[12] 谢敏, 卢燕旋, 叶佳南, 等. 电-氢-混氢天然气耦合的城市综合能源系统低碳优化调度[J]. 电力自动化设备, 2023, 43(12): 109-117.
XIE M, LU Y X, YE J N, et al.Low-carbon optimal scheduling of electricity-hydrogen-HCNG coupled urban integrated energy system[J]. Electric power automation equipment, 2023, 43(12): 109-117.
[13] 樊伟杰, 崔双喜, 李浩博. 考虑两阶段P2G和燃气掺氢的综合能源系统双层优化调度[J]. 电测与仪表, 2025, 62(2): 16-25.
FAN W J, CUI S X, LI H B.Double-layer optimal scheduling of integrated energy system considering two-stage P2G and gas hydrogen doping[J]. Electrical measurement & instrumentation, 2025, 62(2): 16-25.
[14] 胡福年, 周小博, 张彭成, 等. 计及碳捕集的综合能源系统低碳经济优化调度[J]. 太阳能学报, 2024, 45(3): 419-427.
HU F N, ZHOU X B, ZHANG P C, et al.Low carbon economy optimal dispatching of integrated energy system taking into account carbon capture[J]. Acta energiae solaris sinica, 2024, 45(3): 419-427.
[15] 栗然, 吕慧敏, 彭湘泽, 等. 考虑动态定价和碳交易的多园区综合能源服务商低碳合作优化策略[J]. 太阳能学报, 2024, 45(3): 337-346.
LI R, LYU H M, PENG X Z, et al.Optimization strategy for low-carbon cooperation of multi-district integrated energy service providers considering dynamic pricing and carbon trading[J]. Acta energiae solaris sinica, 2024, 45(3): 337-346.
[16] 安源, 苏瑞, 郑申印, 等. 计及碳交易和源-荷侧资源的综合能源系统低碳经济优化[J]. 太阳能学报, 2023, 44(11): 547-555.
AN Y, SU R, ZHENG S Y, et al.Low carbon economic optimization of integrated energy system considering carbon trading and source-load side resources[J]. Acta energiae solaris sinica, 2023, 44(11): 547-555.
[17] 魏震波, 马新如, 郭毅, 等. 碳交易机制下考虑需求响应的综合能源系统优化运行[J]. 电力建设, 2022, 43(1): 1-9.
WEI Z B, MA X R, GUO Y, et al.Optimized operation of integrated energy system considering demand response under carbon trading mechanism[J]. Electric power construction, 2022, 43(1): 1-9.
[18] 梁海平, 王啸洲, 王金英, 等. 计及CCPP-P2G-CHP协同的园区综合能源系统低碳优化运行[J/OL]. 华北电力大学学报(自然科学版), 2024: 1-12. (2024-07-11). https://kns.cnki.net/KCMS/detail/detail.aspx filename=HBDL20240707002&dbname=CJFD&dbcode=CJFQ.
LIANG H P, WANG X Z, WANG J Y, et al. Low carbon optimized operation of integrated energy system in the park, taking into account CCPP-P2G-CHP collaboration[J/OL]. Journal of North China electric power university (natural science edition), 2024: 1-12. (2024-07-11). https://kns.cnki.net/KCMS/detail/detail.aspx filename=HBDL20240707002&dbname=CJFD&dbcode=CJFQ.
[19] 周益民, 杨博, 胡袁炜骥, 等. 考虑绿证-碳交易的多能互补综合能源系统电-热-气协同低碳优化调度[J]. 电网技术, 2025, 49(06): 2428-2435.
ZHOU Y M, YANG B, HU Y, et al.Electricity: heat: gas collaborative low: carbon optimal dispatch of multi: energy complementary integrated energy system considering green certificate and carbon emission trading[J]. Power system technology, 2025, 49(06): 2428-2435.
[20] 张艺, 刘蕊. 考虑不确定性风险的虚拟电厂优化调度模型研究[J]. 智慧电力, 2024, 52(8): 9-18.
ZHANG Y, LIU R.Virtual power plant optimal scheduling model considering uncertain risks[J]. Smart power, 2024, 52(8): 9-18.
基金
河南省科技攻关项目(222102240072)