解决频率二次跌落的风电-抽蓄频率协调控制策略

罗远翔, 张楠, 蔡麟书, 闫钦勇

太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 727-736.

PDF(2419 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2419 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (8) : 727-736. DOI: 10.19912/j.0254-0096.tynxb.2024-2446

解决频率二次跌落的风电-抽蓄频率协调控制策略

  • 罗远翔, 张楠, 蔡麟书, 闫钦勇
作者信息 +

COORDINATED FREQUENCY CONTROL STRATEGY OF WIND POWER PUMPED STORAGE INTEGRATION SYSTEM FOR SOLVING SECONDARY FREQUENCY DROP

  • Luo Yuanxiang, Zhang Nan, Cai Linshu, Yan Qinyong
Author information +
文章历史 +

摘要

为解决高比例新能源并网系统在发生负荷扰动时出现的频率跌落的问题,提出一种风电与双馈变速抽蓄机组的频率协调控制策略。首先建立系统频率响应模型,利用滑模预测控制使风电和双馈抽蓄机组对电网频率进行支撑;其次,引入转速释放函数使风电机组合理释放自身转子动能;然后,调制风电机组转速恢复曲线,并将风电机组转子动能变化与双馈抽蓄机组的功率参考值关联,构建二者协调控制机制,通过双馈抽蓄快速响应的二次出力补偿风电转速恢复阶段的功率缺额,以应对传统控制策略难以解决的频率二次跌落问题;最后在Matlab/Simulink中搭建系统仿真模型,以验证该策略的有效性。仿真结果表明,在多种场景下该策略均具有更好的调频效果,并消除了频率二次跌落和同步发电机组的出力波动。

Abstract

To address frequency drops under load disturbances in power systems with high renewable penetration, this paper proposes a coordinated frequency control strategy combining wind power and variable-speed pumped storage units. Firstly, a system frequency response model is developed, where sliding-mode predictive control enables both wind turbines and pumped storage units to support grid frequency regulation. Subsequently, a controlled rotor kinetic energy release scheme is introduced to manage the wind turbine’s inertial response. Furthermore, the wind turbine’s speed recovery curve is modulated by mapping the rotor kinetic energy variation to the power reference of the variable-speed pumped storage unit, establishing a coordination mechanism. This allows the fast secondary power response of the pumped storage unit to compensate the power deficit during wind turbine speed recovery, effectively mitigating secondary frequency drops that challenge conventional strategies. The proposed approach is validated via Matlab/Simulink simulations, demonstrating superior frequency regulation performance across scenarios, with eliminated secondary frequency drops and synchronous generator power oscillations.

关键词

风电 / 频率响应 / 储能 / 电网频率控制 / 可再生能源 / 抽水蓄能机组

Key words

wind power / frequency response / energy storage / electric frequency control / renewable energy / pumped storage power plants

引用本文

导出引用
罗远翔, 张楠, 蔡麟书, 闫钦勇. 解决频率二次跌落的风电-抽蓄频率协调控制策略[J]. 太阳能学报. 2025, 46(8): 727-736 https://doi.org/10.19912/j.0254-0096.tynxb.2024-2446
Luo Yuanxiang, Zhang Nan, Cai Linshu, Yan Qinyong. COORDINATED FREQUENCY CONTROL STRATEGY OF WIND POWER PUMPED STORAGE INTEGRATION SYSTEM FOR SOLVING SECONDARY FREQUENCY DROP[J]. Acta Energiae Solaris Sinica. 2025, 46(8): 727-736 https://doi.org/10.19912/j.0254-0096.tynxb.2024-2446
中图分类号: TV743    TM614   

参考文献

[1] YAN K F, LI G Q, ZHANG R F, et al.Frequency control and optimal operation of low-inertia power systems with HVDC and renewable energy: a review[J]. IEEE transactions on power systems, 2024, 39(2): 4279-4295.
[2] 国家能源局. 国家能源局发布1~5月份全国电力工业统计数据[EB/OL].2025[2025-06-23]. https://www.nea.gov.cn/20250623/6a557ee5ad944062a6c01d6e8417474e/c.html
National Energy Administration. National energy bureau releases national electric power industry statistics for January to July[EB/OL].2025[2025-06-23]. https://www.nea.gov.cn/20250623/6a557ee5ad944062a6c01d6e8417474e/c.html
[3] HAN Y, WANG D Q, ZHOU X.Frequency support of DFIG-based wind turbine via virtual synchronous control of inner voltage vector[J]. Electric power systems research, 2023, 225: 109823.
[4] 钱敏慧, 张建胜, 秦文萍, 等. 高比例风电联网背景下风电机组快速频率支撑研究综述[J/OL]. 太阳能学报, 2024: 1-14[2024-10-28]. https://doi.org/10.19912/j.0254-0096.tynxb.2024-1057.
QIAN M H, ZHANG J S, QIN W P, et al. Rewiew of fast frequency support of wtgs under background of high proportion wind power interconnection[J/OL]. Acta energiae solaris sinica, 2024: 1-14[2024-10-28]. https://doi.org/10.19912/j.0254-0096.tynxb.2024-1057.
[5] 刘德旭, 杨迎, 黄宏旭, 等. 新型电力系统大规模抽水蓄能调度运行与控制综述及展望[J].中国电机工程学报, 2025, 45(1): 80-98.
LIU D X, YANG Y, HUANG H X, et al.An overview and outlook of the operation and control of large-scale pumped hydro storages in modern power systems[J]. Proceedings of the CSEE, 2025, 45(1): 80-98.
[6] 国家能源局. 新型电力系统发展蓝皮书[M]. 北京: 中国电力出版社, 2023.
National Energy Administration.Blue book on the development of new power systems[M]. Beijing, China: China Electric Power Press, 2023.
[7] International Hydropower Association.2024 world hydropower outlook[R]. London: International Hydropower Association, 2024.
[8] 郭磊, 许昌, 张飞. 双馈变速抽蓄机组关键技术及展望[J].电力自动化设备, 2025, 45(1): 172-183.
GUO L, XU C, ZHANG F.Key technologies and prospects of doubly-fed variable-speed pumped storage units[J]. Electric power automation equipment, 2025, 45(1): 172-183.
[9] 范国梁. 双馈变速抽水蓄能机组转速回拉及控制策略研究[D]. 西安: 西安理工大学, 2023.
FAN G L.Research on speed pulling-back and control strategy of doubly-fed variable speed pumped storage units[D]. Xi’an: Xi’an University of Technology, 2023.
[10] 朱珠, 潘文霞, 刘铜锤, 等. 变速抽蓄机组频率响应机理模型与性能研究[J]. 电网技术, 2023, 47(2): 463-474.
ZHU Z, PAN W X, LIU T C, et al.Frequency response mechanism modeling and performance analysis of adjustable-speed pumped storage unit[J]. Power system technology, 2023, 47(2): 463-474.
[11] 刘开培, 朱蜀, 冯欣, 等. 双馈式变速抽水蓄能电厂的机电暂态建模及模型预测控制[J]. 高电压技术, 2020, 46(7): 2407-2418.
LIU K P, ZHU S, FENG X, et al.Electromechanical transient modeling and model predictive control of doubly-fed variable-speed pumped storage power plant[J]. High voltage engineering, 2020, 46(7): 2407-2418.
[12] SCHMIDT J, KEMMETMÜLLER W, KUGI A. Modeling and static optimization of a variable speed pumped storage power plant[J]. Renewable energy, 2017, 111: 38-51
[13] 陈亚红, 邓长虹, 刘玉杰, 等. 抽水工况双馈可变速抽蓄机组机电暂态建模及有功-频率耦合特性[J]. 中国电机工程学报, 2022, 42(3): 942-957.
CHEN Y H, DENG C H, LIU Y J, et al.Multi-stage soft coordinated control of variable speed pumped storage unit in the process of mode conversion under the generation condition[J]. Proceedings of the CSEE, 2022, 42(3): 942-957.
[14] 彭瀚锋, 李辉, 谢宁宁, 等. 双馈抽水蓄能机组最优功率控制策略及提升风电并网能力仿真[J]. 太阳能学报, 2024, 45(6): 171-181.
PENG H F, LI H, XIE N N, et al.Optimal power control strategy of doubly-fed pumped energy storage unit and simulation of improvement of wind power grid connection ability[J]. Acta energiae solaris sinica, 2024, 45(6): 171-181.
[15] 劳文洁, 史林军, 王伟, 等. 基于改进DDPG的变速抽蓄机组参与系统调频研究[J]. 太阳能学报, 2024, 45(3): 240-250.
LAO W J, SHI L J, WANG W, et al.Research on frequency control of power system with DFIM-PSH based on improved ddpg[J]. Acta energiae solaris sinica, 2024, 45(03): 240-250.
[16] GAO C Y, YU X Y, NAN H P, et al.Stability and dynamic analysis of doubly-fed variable speed pump turbine governing system based on Hopf bifurcation theory[J]. Renewable energy, 2021, 175: 568-579.
[17] MENNEMANN J F, MARKO L, SCHMIDT J, et al.Nonlinear model predictive control of a variable-speed pumped-storage power plant[J]. IEEE transactions on control systems technology, 2021, 29(2): 645-660.
[18] 许益恩, 杨德健, 郑太英, 等. 计及电网频率偏差的双馈风电机组频率控制策略[J]. 太阳能学报, 2022, 43(10): 229-235.
XU Y E, YANG D J, ZHENG T Y, et al.Frequency control strategy of doubly-fed wind generators considering grid frequency deviation[J]. Acta energiae solaris sinica, 2022, 43(10): 229-235.
[19] HARANDI M J, BINA M T, GOLKAR M A, et al.Inertial frequency response of wind turbines using adaptive full feedback linearization control: stability and robustness analysis[J]. IEEE transactions on sustainable energy, 2024, 15(4): 2777-2788.
[20] BJÖRK J, POMBO D V, JOHANSSON K H. Variable-speed wind turbine control designed for coordinated fast frequency reserves[J]. IEEE transactions on power systems, 2022, 37(2): 1471-1481.
[21] 唐玉烽, 杨苹, 杨义. 考虑频率二次跌落的风电机组频率响应控制策略[J]. 电力系统自动化, 2023, 47(9): 166-174.
TANG Y F, YANG P, YANG Y.Frequency response control strategy of wind turbines considering frequency secondary drop[J]. Automation of electric power systems, 2023, 47(9): 166-174.
[22] HOSSEINI S A, FOTUHI-FIRUZABAD M, DEHGHANIAN P, et al.Coordinating demand response and wind turbine controls for alleviating the first and second frequency dips in wind-integrated power grids[J]. IEEE transactions on industrial informatics, 2024, 20(2): 2223-2233.
[23] 王瑞明. 风储一体化系统的协同运行与控制技术研究[D]. 济南: 山东大学, 2023.
WANG R M.Studie on coordinated operation and control techniques of wind-energy storage integrated system[D]. Ji’nan: Shandong University, 2023.
[24] 庄凯勋, 孙建军, 丁理杰, 等. 提升双馈变速抽水蓄能机组频率响应特性的控制策略[J]. 电工技术学报, 2023, 38(23): 6292-6304.
ZHUANG K X, SUN J J, DING L J, et al.A control strategy with improved frequency response characteristics of variable speed DFIM pumped storage[J]. Transactions of China Electrotechnical Society, 2023, 38(23): 6292-6304.
[25] 李国庆, 刘先超, 姜涛, 等. 考虑转子磁链-电流环控制动态的虚拟惯量DFIG功频响应特性建模[J]. 电网技术, 2023, 47(12): 4897-4911.
LI G Q, LIU X C, JIANG T, et al.An active power-frequency response modeling method of doubly-fed induction generator with virtual inertia control considering rotor flux-current loop control dynamics[J]. Power system technology, 2023, 47(12): 4897-4911.
[26] YANG D J, KIM J, KANG Y C, et al.Temporary frequency support of a DFIG for high wind power penetration[J]. IEEE transactions on power systems, 2018, 33(3): 3428-3437.
[27] KUWABARA T, SHIBUYA A, FURUTA H, et al.Design and dynamic response characteristics of 400 MW adjustable speed pumped storage unit for Ohkawachi power station[J]. IEEE transactions on energy conversion, 1996, 11(2): 376-384.
[28] OLIVEIRA E J, HONÓRIO L M, ANZAI A H, et al. Optimal transient droop compensator and PID tuning for load frequency control in hydro power systems[J]. International journal of electrical power & energy systems, 2015, 68: 345-355.
[29] 赵大伟, 马进, 钱敏慧, 等. 光伏电站参与大电网一次调频的控制增益研究[J]. 电网技术, 2019, 43(2): 425-435.
ZHAO D W, MA J, QIAN M H, et al.Research on control gain for photovoltaic power plants participating in primary frequency regulation of large power grid[J]. Power system technology, 2019, 43(2): 425-435.
[30] 杨冬锋, 朱军豪, 姜超, 等. 基于分布式模型预测的高比例风电系统多源协同负荷频率控制策略[J]. 电网技术, 2024, 48(7): 2804-2814.
YANG D F, ZHU J H, JIANG C, et al.High proportion wind power system multi-source collaborate load frequency control strategy based on distributed model prediction[J]. Power system technology, 2024, 48(7): 2804-2814.
[31] 高春阳. 双馈变速抽水蓄能机组的优化控制及稳定性分析[D]. 西安: 西安理工大学, 2022.
GAO C Y.Optimal control and stability analysis of doubly-fed variable speed pumped storage units[D]. Xi’an: Xi’an University of Technology, 2022.

基金

国家自然科学基金(52377082); 吉林省教育厅科学研究项目(JJKH20230123KJ)

PDF(2419 KB)

Accesses

Citation

Detail

段落导航
相关文章

/