针对传统单管风电塔架存在施工工艺复杂、运输安装难,结构用钢量高等问题,提出一种上部为单管钢塔筒、下部为三肢柱格构式的新型组合塔架结构。首先,基于空间矩阵位移法构建求力模型,求解新型组合塔架的杆件应力;其次,建立以截面最大应力一致性为优化目标的多目标优化模型;然后,以塔架的直径和厚度作为优化变量,考虑6个约束条件,编写基于粒子群优化算法的优化程序,实现了塔架下部-组合格构式塔架截面尺寸最优化;最后利用有限元软件ABAQUS,对3个角度(α=60°、α=45°和α=30°)的优化前后组合塔架结构建立有限元模型,分析和对比该组合格构式塔架结构的应力。发现该求力模型能准确求解杆件应力;当 =45°时,结构优化效果最佳,收敛速度最快。优化后格构式塔架用钢量减少48.8%,截面有效率提升70.3%,各肢柱杆应力差减少70.2%。验证了基于粒子群优化算法模型可行,其结果和方法可以为同类型塔架的设计以及相似领域的研究提供理论参考依据。
Abstract
To address the challenges of complex construction process, difficult transpot ation and install atim, and excessive steel usage that arise with the increasing height of traditional monopole wind turbine towers, this study puts forward a novel hybrid lattice tower design. The proposed structure integrates a monopole steel tube at the top with a three-legged lattice structure at the bottom, with the goal of enhancing structural performance and material efficiency. Firstly, a force-based model was developed using the spatial matrix displacement method to calculate the member stresses of the tower. Subsequently, a multi-objective optimization model was established to maximize stress uniformity across cross-sections. The tower's diameter and thickness were selected as key design variables, and six constraints were considered. To optimize the cross-sectional dimensions of the lower tower section, a computational optimization program was developed by integrating the spatial matrix displacement method with a particle swarm optimization algorithm. The results were validated using finite element models at three angles (α=60°、α=45°、α=30°) in ABAQUS, which facilitated a comparative analysis of the structural performance before and after optimization. The results demonstrate that the proposed force-based model accurately predicts the member stresses, and the structure is effectively optimized. Specifically, whenα=45°, the optimization effect is optimal and the convergence is fastest. The optimized hybrid lattice tower achieves substantial steel savings, with a reduction of approximately 48.8%. Additionally, the cross-sectional efficiency is enhanced by 70.3%, and the stress differences among the column members are diminished by approximately 70.2%. These improvements confirm the feasibility of the proposed optimization model. The methods and results presented in this study offer valuable insights for the design and analysis of similar hybrid lattice towers.
关键词
风力发电塔 /
粒子群优化 /
有限元分析 /
空间矩阵位移法 /
求力模型
Key words
wind turbines tower /
particle swarm optimization /
finite element analysis /
spatial matrix displacement method /
force-based model
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李耀华, 孔力. 发展太阳能和风能发电技术加速推进我国能源转型[J]. 中国科学院院刊, 2019, 34(4): 426-433.
LI Y H, KONG L. Developing solar and wind power generation technology to accelerate China's energy transformation[J]. Bulletin of Chinese academy of sciences, 2019, 34(4): 426-433.
[2] 周孝信, 陈树勇, 鲁宗相, 等. 能源转型中我国新一代电力系统的技术特征[J]. 中国电机工程学报, 2018, 38(7): 1893-1904, 2205.
ZHOU X X, CHEN S Y, LU Z X, et al. Technology features of the new generation power system in China[J]. Proceedings of the CSEE, 2018, 38(7): 1893-1904, 2205.
[3] 张羽, 蔡新, 高强, 等. 风力机塔架结构研究概述[J]. 工程设计学报, 2016, 23(2): 108-115, 123.
ZHANG Y, CAI X, GAO Q, et al. Research summary of wind turbine tower structure[J]. Chinese journal of engineering design, 2016, 23(2): 108-115, 123.
[4] 陈俊岭, 何欣恒, 丛欧. 基于改进遗传算法的钢-混组合式风电机组塔架优化设计研究[J]. 太阳能学报, 2021, 42(7): 359-365.
CHEN J L, HE X H, CONG O. Design optimization of steel-concrete hybrid wind turbine tower based on improved genetic algorithm[J]. Acta energiae solaris sinica, 2021, 42(7): 359-365.
[5] 陈逸杰, 张艳江, 林成欢, 等. 风电预应力混凝土-钢混合塔架设计优化研究[J]. 太阳能学报, 2021, 42(3): 121-127.
CHEN Y J, ZHANG Y J, LIN C H, et al. Optimization and analysis on prestressed concrete-steel hybrid wind turbine tower[J]. Acta energiae solaris sinica, 2021, 42(3): 121-127.
[6] 许斌, 李泽宇, 陈洪兵. 预应力混凝土-钢组合风电塔架塔段优化研究[J]. 湖南大学学报(自然科学版), 2016, 43(7): 25-31.
XU B, LI Z Y, CHEN H B. Geometry optimization on prestressed concrete and steel segments of wind turbine towers[J]. Journal of Hunan University (natural sciences), 2016, 43(7): 25-31.
[7] 陈俊岭, 阳荣昌, 马人乐. 大型风电机组组合式塔架结构优化设计[J]. 湖南大学学报(自然科学版), 2015, 42(5): 29-35.
CHEN J L, YANG R C, MA R L. Structural design optimization of a composite tower for large wind turbine systems[J]. Journal of Hunan University (natural sciences), 2015, 42(5): 29-35.
[8] O'LEARY K, PAKRASHI V, KELLIHER D. Optimization of composite material tower for offshore wind turbine structures[J]. Renewable energy, 2019, 140: 928-942.
[9] OUHDAN M, BOUSSETTA H, OUAKKI Y, et al.Optimized design of a self-supporting monopole tower of a wind turbine[C]//2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET). Meknes, Morocco, 2022: 1-5.
[10] POLLINI N, PEGALAJAR-JURADO A, BREDMOSE H.Design optimization of a TetraSpar-type floater and tower for the IEA Wind 15 MW reference wind turbine[J]. Marine structures, 2023, 90: 103437.
[11] FURLANETTO A, GOMES H M, DE ALMEIDA F S. Design optimization of tapered steel wind turbine towers by QPSO algorithm[J]. International journal of steel structures, 2020, 20(5): 1552-1563.
[12] 周扬, 骆光进, 李晓艳, 等. 海上风电机组预应力钢管混凝土格构式塔架动力特性分析[J]. 船舶工程, 2022, 44(S2): 112-115.
ZHOU Y, LUO G J, LI X Y, et al. Dynamic characteristics analysis of prestressed concrete filled steel tubular lattice tower of offshore wind turbine[J]. Ship engineering, 2022, 44(S2): 112-115.
[13] STAVRIDOU N, KOLTSAKIS E, C BANIOTOPOULOS C. Lattice and tubular steel wind turbine towers. comparative structural investigation[J]. Energies, 2020, 13(23): 6325.
[14] JIN K Y, ZHOU X H, HU C, et al.Axial hysterestic behavior of prestressed CFDST columns for lattice-type wind turbine towers[J]. Thin-walled structures, 2024, 205: 112565.
[15] XIONG C N, DAI K S, LUO Y X, et al.Proposal and application of onshore lattice wind turbine support structure and integrated multi-scale fatigue assessment method[J]. Engineering structures, 2024, 302: 117314.
[16] KENNEDY J, EBERHART R.Particle swarm optimization[C]//Proceedings of ICNN'95 - International Conference on Neural Networks. Perth, WA, Australia, 2002: 1942-1948.
[17] 肖胤喆. 基于改进粒子群优化算法的特征选择方法研究[D]. 长春: 吉林大学, 2022.
XIAO Y Z. Research on feature selection based on enhanced particle swarm optimization algorithm[D]. Changchun: Jilin University, 2022.
[18] SHI Y, EBERHART R C.Empirical study of particle swarm optimization[C]//Proceedings of the 1999 Congress on Evolutionary Computation-CEC99.
Washington, DC, USA, 2002: 1945-1950.
[19] 李芳, 凌道盛. 工程结构优化设计发展综述[J]. 工程设计学报, 2002, 9(5): 229-235.
LI F, LING D S. Survey of the developing in engineering structural optimization design[J]. Journal of Engineering design, 2002, 9(5): 229-235.
[20] GB 50017-2017, 钢结构设计标准[S].
GB 50017-2017,Standard for design of steel structures.[S].
[21] GB/T 50051—2021, 烟囱工程技术设计标准[S].
GB/T 50051—2021,Technical standard for chimnery engineering.[S].
[22] GB/T 19072—2022, 风力发电机组塔架[S].
GB/T 19072—2022, Wind turbines—Tower[S].
[23] GB 50135—20019, 高耸结构设计规范[S].
GB 50135—20019, Code for design of high-rising structures[S].
[24] 陈塑寰. 空间薄壁杆件结构的有限单元法[J]. 吉林工业大学学报, 1980, 10(1): 1-5, 7-11.
CHEN S H. Finite element method of spatial thin-walled bar structure[J]. Journal of Jilin University of Technology, 1980, 10(1): 1-5, 7-11.
[25] 周海龙, 周水兴. 空间实体-梁单元原始刚度矩阵的推导[J]. 内蒙古农业大学学报(自然科学版), 2014, 35(2): 97-101.
ZHOU H L, ZHOU S X. The derivation of original stiffness matrix on the spatial solid-beam element[J]. Journal of Inner Mongolia Agricultural University (natural science edition), 2014, 35(2): 97-101.
[26] 王晓峰, 张其林. 空间薄壁梁完全拉格朗日格式几何刚度矩阵[J]. 同济大学学报(自然科学版), 2011, 39(2): 151-157.
WANG X F, ZHANG Q L. Geometrical stiffness matrix of spatial thin-walled beams in total-Lagrangian formulation[J]. Journal of Tongji University (natural science), 2011, 39(2): 151-157.
[27] 熊峰, 童蔷, 赖曦凌. 钢管混凝土拱结构计算的矩阵位移法[J]. 西南交通大学学报, 2000, 35(5): 480-483.
XIONG F, TONG Q, LAI X L. Matrix displacement method for concrete filled steel tubular arch structures[J]. Journal of southwest Jiaotong University, 2000, 35(5): 480-483.
[28] 蔡红奎, 闻彩焕. 空间框架结构矩阵位移法分析[J]. 四川建材, 2011, 37(1): 28-29.
CAI H K, WEN C H. Analysis of spatial frame structure by matrix displacement method[J]. Sichuan building materials, 2011, 37(1): 28-29.
[29] 郑瑞杰, 马人乐. 变截面构架式风力发电塔架GA优化[J]. 土木建筑与环境工程, 2009, 31(6): 1-6.
ZHENG R J, MA R L. GA Optimization for variable cross section frame wind turbine[J]. Journal of civil, architectural & environmental engineering, 2009, 31(6): 1-6.