固体填充床储热性能实验与模拟研究

刘琰, 章颢缤, 叶成梁, 俞明锋, 张磊, 温航宇

太阳能学报 ›› 2025, Vol. 46 ›› Issue (11) : 136-143.

PDF(2601 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2601 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (11) : 136-143. DOI: 10.19912/j.0254-0096.tynxb.2025-0258

固体填充床储热性能实验与模拟研究

  • 刘琰1,2, 章颢缤1,2, 叶成梁2, 俞明锋2, 张磊1, 温航宇1
作者信息 +

EXPERIMENTAL AND NUMERICAL STUDY ON THERMAL STORAGE PERFORMANCE OF SOLID PACKED BEDS

  • Liu Yan1,2, Zhang Haobin1,2, Ye Chengliang2, Yu Mingfeng2, Zhang Lei1, Wen Hangyu1
Author information +
文章历史 +

摘要

为研究卧式固体颗粒填充床系统的储热性能,搭建以空气作为传热介质的实验装置,对储/放热过程的热力学特性和压降变化进行了实验与数值模拟研究。结果表明,填充床储放热效率达到95.5%,热空气入流速度从0.40 m/s增至1.96 m/s时,储罐有效利用率提高15个百分点,储热时间缩短70%。运行过程中,填充床顶部出现沉降现象,导致后段填充床提前加热,整体储热量降低。通过在床层顶部设置合理插入深度的挡板,可有效缓解空气旁路问题。当储热滞后系数k=1时,空气层与填充床温度场推移速度一致,此时挡板插入深度最优。

Abstract

To investigate the thermal storage performance of horizontal packed-bed systems filled with solid particles, an experimental setup was established using air as the heat transfer medium. Experimental and numerical studies were conducted to analyze the thermodynamic characteristics and pressure drop variations during the charging and discharging processes. Results showed that the round-trip efficiency of the packed bed reached 95.5%. When the inlet airflow velocity increased from 0.40 m/s to 1.96 m/s, the effective utilization rate improved by 15 percentage points, and the storage duration decreased by 70%. During operation, a top-layer settling phenomenon occurred in the packed bed, leading to premature heating of the downstream section and a reduction in overall thermal storage capacity. By installing baffles with an optimal insertion depth at the top of the bed, the impact of air bypass could be effectively mitigated. When the thermal storage lag coefficient k=1, the propagation speed of the temperature field in the air layer matched that in the packed bed, achieving the optimal baffle insertion depth.

关键词

填充床 / 储热 / 数值模拟 / 储热实验 / 空气旁路

Key words

packed beds / heat storage / mumerical simulation / thermal storage experiment / air bypass

引用本文

导出引用
刘琰, 章颢缤, 叶成梁, 俞明锋, 张磊, 温航宇. 固体填充床储热性能实验与模拟研究[J]. 太阳能学报. 2025, 46(11): 136-143 https://doi.org/10.19912/j.0254-0096.tynxb.2025-0258
Liu Yan, Zhang Haobin, Ye Chengliang, Yu Mingfeng, Zhang Lei, Wen Hangyu. EXPERIMENTAL AND NUMERICAL STUDY ON THERMAL STORAGE PERFORMANCE OF SOLID PACKED BEDS[J]. Acta Energiae Solaris Sinica. 2025, 46(11): 136-143 https://doi.org/10.19912/j.0254-0096.tynxb.2025-0258
中图分类号: TK513   

参考文献

[1] 黄震, 谢晓敏. 碳中和愿景下的能源变革[J]. 中国科学院院刊, 2021, 36(9): 1010-1018.
HUANG Z, XIE X M.Energy revolution under vision of carbon neutrality[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(9): 1010-1018.
[2] 崔杨, 张家瑞, 仲悟之, 等. 计及电热转换的含储热光热电站与风电系统优化调度[J]. 中国电机工程学报, 2020, 40(20): 6482-6494.
CUI Y, ZHANG J R, ZHONG W Z, et al.Optimal scheduling of concentrating solar power plant with thermal energy storage and wind farm considering electric-thermal conversion[J]. Proceedings of the CSEE, 2020, 40(20): 6482-6494.
[3] CARRILLO A J, GONZÁLEZ-AGUILAR J, ROMERO M, et al. Solar energy on demand: a review on high temperature thermochemical heat storage systems and materials[J]. Chemical reviews, 2019, 119(7): 4777-4816.
[4] 王晋达, 孔凡思, 靳宇飞, 等. 集中供热系统中可再生能源站的布局同步优化模型研究与应用[J]. 太阳能学报, 2024, 45(10): 266-275.
WANG J D, KONG F S, JIN Y F, et al.Research and application of synchronized layout and optimization model for renewable energy stations in district heating systems[J]. Acta energiae solaris sinica, 2024, 45(10): 266-275.
[5] MEIER A, WINKLER C, WUILLEMIN D.Experiment for modelling high temperature rock bed storage[J]. Solar energy materials, 1991, 24(1/2/3/4): 255-264.
[6] AL-AZAWII M M S, ALHAMDI S F H, BRAUN S, et al. Thermocline in packed bed thermal energy storage during charge-discharge cycle using recycled ceramic materials - Commercial scale designs at high temperature[J]. Journal of energy storage, 2023, 64: 107209.
[7] HÄNCHEN M, BRÜCKNER S, STEINFELD A. High-temperature thermal storage using a packed bed of rocks-Heat transfer analysis and experimental validation[J]. Applied thermal engineering, 2011, 31(10): 1798-1806.
[8] 孙潇, 罗志斌, 蔡春荣, 等. 不同长径比填充床蓄冷器储释冷特性研究[J]. 太阳能学报, 2024, 45(10): 745-751.
SUN X, LUO Z B, CAI C R, et al.Study on cold storage characteristics of packed bed regenerator with different aspect ratio[J]. Acta energiae solaris sinica, 2024, 45(10): 745-751.
[9] MCTIGUE J D, MARKIDES C N, WHITE A J.Performance response of packed-bed thermal storage to cycle duration perturbations[J]. Journal of energy storage, 2018, 19: 379-392.
[10] 金翼, 王乐, 杨岑玉, 等. 堆积床储冷系统循环性能分析[J]. 储能科学与技术, 2017, 6(4): 708-718.
JIN Y, WANG L, YANG C Y, et al.Cycle performance of a packed bed based cold storage device[J]. Energy storage science and technology, 2017, 6(4): 708-718.
[11] 王政伟, 吕长宁, 钱莉, 等. 固体蓄热器填充床容积蓄热率的分析与研究[J]. 太阳能学报, 2019, 40(12): 3389-3394.
WANG Z W, LYU C N, QIAN L, et al.Numerical calculation and analysis of volumetric heat storage ratio in packed bed of solid thermal storage[J]. Acta energiae solaris sinica, 2019, 40(12): 3389-3394.
[12] KOTHARI R, HEMMINGSEN C S, VOIGT N V, et al.Numerical and experimental analysis of instability in high temperature packed-bed rock thermal energy storage systems[J]. Applied energy, 2024, 358: 122535.
[13] EGGERS J R, VON DER HEYDE M, THAELE S H, et al. Design and performance of a long duration electric thermal energy storage demonstration plant at megawatt-scale[J]. Journal of energy storage, 2022, 55: 105780.
[14] 来振亚. 颗粒堆积床烧结及储能特性研究[D]. 杭州: 浙江大学, 2022.
LAI Z Y.Investigation of sintering and energy storage characteristics of particle packed bed[D]. Hangzhou: Zhejiang University, 2022.
[15] ERGUN S.Fluid flow through packed columns[J]. Chemical engineering progress, 1952, 48(2): 89.
[16] RAICHURA R C.Pressure drop and heat transfer in packed beds with small tube-to-particle diameter ratio[J]. Experimental heat transfer, 1999, 12(4): 309-327.
[17] FOUMENY E A, BENYAHIA F, CASTRO J A A, et al. Correlations of pressure drop in packed beds taking into account the effect of confining wall[J]. International journal of heat and mass transfer, 1993, 36(2): 536-540.
[18] 赵岩, 王亮, 陈海生, 等. 填充床显热及相变储热特性分析[J]. 工程热物理学报, 2012, 33(12): 2052-2057.
ZHAO Y, WANG L, CHEN H S, et al.Analysis on thermal storage characteristic of sensible and latent heat in packed beds[J]. Journal of engineering thermophysics, 2012, 33(12): 2052-2057.
[19] BRINKMAN H C.The viscosity of concentrated suspensions and solutions[J]. The journal of chemical physics, 1952, 20(4): 571.
[20] WU C C, HWANG G J.Flow and heat transfer characteristics inside packed and fluidized beds[J]. Journal of heat transfer, 1998, 120(3): 667-673.
[21] CHANDRASEKHARA B C, VORTMEYER D.Flow model for velocity distribution in fixed porous beds under isothermal conditions[J]. Wärme - und stoffübertragung, 1979, 12(2): 105-111.

基金

国家重点研发计划(2022YFB2405205); 湖州市重点研发计划(2024ZD2037)

PDF(2601 KB)

Accesses

Citation

Detail

段落导航
相关文章

/