风力机桩基、塔架及连接部件构成的支撑结构属顶部承担较大质量的力学结构,地震对其造成的影响远大于常规建筑。针对上述问题,基于NREL开发计算平台,联合TurbSim、AeroDyn、FAST及Seismic,对变风载荷、变地震载荷(波形、强度)下的风力机动力学响应进行研究。发现:地震横波对风力机结构响应造成剧烈影响,纵波相对于横波影响较小;风力机在水平方向的结构响应比竖向更剧烈,垂直方向的结构响应在结构分析时可忽略不计。叶片的结构响应主要由风载荷造成;因风载荷在来流方向的作用导致塔顶流向位移和塔架侧向弯矩受风载荷和地震载荷同时影响,塔顶侧向位移和塔架流向弯矩受地震载荷作用更显著。
Abstract
The support structure composed of the pile foundation, tower and connecting components of a wind turbine is a mechanical structure that bears a large mass on top, and the impact of earthquakes on it is much greater than that on a conventional building. To address these issues, the dynamic response of wind turbines under variable wind and seismic loads (waveform and intensity) was investigated based on the NREL development computational platform, in conjunction with TurbSim, AeroDyn, FAST and Seismic. It is found that: the seismic transverse waves have a drastic effect on the structural response of the wind turbine, while the longitudinal waves have less effect compared to the transverse waves; the structural response of the wind turbine is more drastic in the horizontal direction than that in the vertical direction, while the structural response in the vertical direction is negligible in the structural analysis. The structural response of the blades is mainly caused by wind loads; due to the action of wind loads in the incoming direction, the tower top flow displacement and tower frame lateral bending moment are affected by both wind and seismic loads, and the tower top lateral displacement and tower frame flow bending moment are more significantly affected by seismic loads.
关键词
风力机 /
地震 /
叶片 /
塔架 /
湍流风 /
土-构耦合
Key words
wind turbines /
earthquake /
blades /
tower /
turbulent wind /
soil structure coupling
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 史立山.“十三五”时期要优先发展风电[J]. 紫光阁, 2016(2): 60.
SHI L S.Priority should be given to the development of wind power during the 13th Five-Year Plan period[J]. Tower of violet light, 2016(2): 60.
[2] 杨阳, 李春, 繆维跑, 等. 高速强湍流风况下的风力机结构动力学响应[J]. 动力工程学报, 2016, 36(8): 638-644.
YANG Y, LI C, MIAO W P, et al. structural dynamic response of a wind turbine under high-speed strong turbulence inflow conditions[J]. Journal of Chinese Society of Power Engineering, 2016, 36(8): 638-644.
[3] YANG Y, BASHIR M, LI C, et al. Analysis of seismic behaviour of an offshore wind turbine with a flexible foundation[J]. Ocean engineering, 2019, 1781(7): 215-228.
[4] JOYCE L.Global wind report 2021[R]. Brussels: Global Wind Energy Council, 2021.
[5] 熊康平, 陈柏全, 张浦阳.2.5 MW海上风力发电机钢塔筒地震响应分析[J]. 低温建筑技术, 2014, 36(4): 73-76.
XIONG K P, CHEN B Q, ZHANG P Y.Seismic response analysis of 2.5 MW offshore wind turbine steel tower[J]. Low temperature architecture technology, 2014, 36(4): 73-76.
[6] 贺广零.考虑土-结构相互作用的风力发电高塔系统地震动态响应分析[J]. 机械工程学报, 2009, 45(7): 87-94.
HE G L.Seismic response analysis of wind turbine tower systems considering soil-structure interaction[J]. Journal of mechanical engineering, 2009, 45(7): 87-94.
[7] 邹锦华, 杨阳, 李春, 等. 地震强度对小型风力机动力学响应影响研究[J]. 热能动力工程, 2018, 33(1): 96-104.
ZOU J H, YANG Y, LI C, et al. study of the influence of the seismic intensity on the dynamic response of a small-sized wind turbine[J]. Journal of engineering for thermal energy and power, 2018, 33(1): 96-104.
[8] 祝磊, 叶帧翔.风力发电机组的有限元分析及动力特性研究[J]. 特种结构, 2012, 29(5): 30-34.
ZHU L, YE Z X.Finite element analysis and dynamic characteristics of wind turbines[J]. Special structures, 2012, 29(5): 30-34.
[9] MURTAGE P J, COLLINS R, BASU B.Dynamic response and vibration control of wind turbine towers[J]. Irish engineers journal, 2004, 58(7): 1-7.
[10] SANTANGELO F, FAILLA G, SANTINI A, et al. Time-domain uncoupled analyses for seismic assessment of land-base wind turbines[J]. Engineering structures, 2016, 123: 275-299.
[11] NUTA E, CHRISTOPOULOS C, PACKER J A.Methodology for seismic risk assessment for tubular steel wind turbine towers application to Canadian seismic environment[J]. Canadian journal of civil engineering, 2011, 38(3): 293-304.
[12] ASAREH M A, PROWELL I.Seismic loading for FAST [R]. National renewable energy laboratory, Golden, CO, Technical Report No.NREL/SR-5000-53872, 2011.
[13] ASAREH M A, PROWELL I, VOLZ J, et al. A computational platform for considering the effects of aerodynamic and seismic load combination for utility scale horizontal axis wind turbines[J]. Earthquake engineering and engineering vibration, 2016, 15(1): 91-102.
[14] SMITH K.WindPact turbine design scaling studies technical area 2: turbine, rotor, and blade logistics[R]. USA: national renewable energy laboratory, 2001.
[15] 李倩倩, 李春, 杨阳, 等. 风场风谱模型的分形维数研究[J]. 能源工程, 2016(2): 28-31, 37.
LI Q Q, LI C, YANG Y, et al. Fractal dimensions research on wind field spectrums[J]. Energy engineering, 2016(2): 28-31, 37.
[16] OLESEN H R, LARSEN S E, HØJSTRUP J.Modelling velocity spectra in the lower part of the planetary boundary layer[J]. Boundary-Layer meteorology, 1984, 29(3): 285-312.
[17] JONKMAN B J, BUHL M L.TurbSim user’s guide for version 140[R]. National Renewable Energy Laboratory, Technical Report Golden, Colorado, 2008.
[18] 曹必锋, 衣传宝.风力机塔架在风-地震作用下的动力响应[J]. 噪声与振动控制, 2014, 34(4): 205-208.
CAO B F, YI C B.Dynamic response analysis of wind turbine towers under wind and earthquake combined loadings[J]. Noise and vibration control, 2014, 34(4): 205-208.
[19] GB 50011—2010, 建筑抗震设计规范[S].
GB 50011—2010, Code for seismic design of buildings[S].
[20] ATIK L A, ABRAHAMSON N.An improved method for nonstationary spectral matching[J]. Earthquake spectra, 2010, 26(3): 601-617.
[21] HANCOCK J, WATSON-LAMPREY J, ABRAHAMSON N A, et al. An improved method of matching response spectra of recorded earthquake ground motion using wavelet[J]. Journal of earthquake engineering, 2006, 10(S1): 67-89.
[22] 刘中胜.大型风力机地震动力特性及结构损伤分析[D]. 上海: 上海理工大学, 2019.
LIU Z S.Seismic dynamic characteristics and structural damage analysis of large wind turbines[D]. Shanghai: University of Shanghai for Science and Technology, 2019.
基金
国家自然科学基金(51976131; 52006148); 上海市“科技创新行动计划”地方院校能力建设项目(19060502200)