针对传统复合抛物面聚光器非追日运行时,入射偏角变化对集热性能影响大、逸出光线难以再利用等问题,设计一种复合抛物面聚光式太阳能光热光电供能器,通过在复合抛物面聚光器(CPC)入光口玻璃盖板下表面增设板背为镜面的光伏组件,可实现对逸出光线的拦截和反射再利用,从而提高供能器对入射太阳辐射的利用效率和供能品位,首先利用光学仿真软件TracePro分析入射偏角对供能器光线接收率等参数的影响机理,基于仿真结果在实际天气条件下对比研究供能器与同规格CPC的进出口空气温差、光热转换效率及输出电功率等随太阳辐射的变化规律。结果表明,当入射偏角范围为0°<α<30°时,与同规格CPC相比,供能器的平均光线接收率提高14.03%;在晴天条件下,当传热空气流速为2.7 m/s时,供能器与同规格CPC的最大进出口空气温差相差0.2 ℃,光热转换效率分别为52.62%、52.63%,在此过程中的供能器输出的总电功率为251 W;在多云条件下,供能器可对外输出的热能和发电功率分别为3.26 MJ、210.5 W,研究结果可为太阳能光热光电高效耦合综合利用提供参考和思路。
Abstract
Aiming at the problems that the change of incident angle has a great influence on the heat collection performance and the escaped light is difficult to be reused when the traditional compound parabolic concentrator is in non-sun-tracking operation, a compound parabolic concentrating solar photothermal-photoelectric energy supply device is designed in this paper. By adding a photovoltaic module with a mirror back on the lower surface of the glass cover plate at the light inlet of the composund parabolic concentrator (CPC), the interception and reflection reuse of the escaped light can be realized, so as to improve the utilization efficiency and energy supply grade of the energy supply device to the incident solar radiation. Firstly, the optical simulation software TracePro is used to analyze the influence mechanism of the incident angle on the parameters such as the ray's receiring rate of the energy supply device. Based on the simulation results, under the actual weather conditions, the variation of the temperature difference between the inlet and outlet air, the photothermal conversion efficiency and the output electric power of the energy supply and the same specification CPC with the solar radiation are compared and studied. The results show that when the incident angle range is 0°<α<30°, the average of the energy supply device is increased by 14.03% compared with that of the same specification CPC. Under sunny conditions, when the heat transfer air flow rate is 2.7 m/s, the maximum inlet and outlet air temperature difference between the energy supply device and the CPC of the same specification is 0.2 ℃, and the photothermal conversion efficiency is 52.62% and 52.63%, respectively. The total output electric power of the energy supply device in this process is 251 W. Under the condition of cloudy days, the thermal energy and power output of the energy supply device are 3.26 MJ and 210.5 W, respectively. The research results provide a reference and idea for the efficient coupling and comprehensive utilization of solar photothermal-photoelectricity.
关键词
聚光 /
光热光电 /
太阳能 /
复合抛物面 /
供能
Key words
concentrating /
photothermal-photoelectricity /
solar energy /
compound parabolic /
energy suppling
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] VIJAYAKUMAR P, KUMARESAN G, GOKUL KUMAR S, et al.A review on applications of nanofluid in evacuated tube heat pipe integrated with compound parabolic concentrator[J]. Materials today: proceedings, 2021, 45: 1227-1232.
[2] EL YDRISSI M, GHENNIOUI H, BENNOUNA E G, et al.Techno-economic study of the impact of mirror slope errors on the overall optical and thermal efficiencies-case study:solar parabolic trough concentrator evaluation under semi-arid climate[J]. Renewable energy, 2020, 161: 293-308.
[3] SANTOS-GONZÁLEZ I, GARCÍA-VALLADARES O, ORTEGA N, et al. Numerical modeling and experimental analysis of the thermal performance of a compound parabolic concentrator[J]. Applied thermal engineering, 2017, 114: 1152-1160.
[4] WINSTON R.Principles of solar concentrators of a novel design[J]. Solar energy, 1974, 16(2): 89-95.
[5] BELLOS E, TZIVANIDIS C.Energy and financial analysis of a solar driven thermoelectric generator[J]. Journal of cleaner production, 2020, 264:121534.
[6] MASTROPASQUA L, PECENATI I, GIOSTRI A, et al.Solar hydrogen production:techno-economic analysis of a parabolic dish-supported high-temperature electrolysis system[J]. Applied energy, 2020, 261: 114392.
[7] XU R H, TANG R S.Geometric characteristics and optical performance of ACPCs for integration with roofing structure of buildings[J]. Energy reports, 2021, 7: 2043-2056.
[8] 邓佳, 季旭, 王岳, 等. 复合抛物面聚光太阳能加湿除湿脱盐系统研究[J]. 太阳能学报, 2022, 43(8): 188-194.
DENG J, JI X, WANG Y, et al.Study on solar humidificaiton dehumidification desalination system driven by composite parabolic concentrator[J]. Acta energiae solaris sinica, 2022, 43(8):188-194.
[9] XU R, HE Z, YANG L,et al.Concentration performance of solar collector integrated compound parabolic concentrator and flat microchannel tube with tracking system[J]. Renewable energy, 2022, 200: 809-820.
[10] 张遵恒, 金俊宇, 郑翔升, 等.基于槽式聚光的光热反应与集热协同实验研究[J]. 太阳能学报, 2022, 43(10): 133-137.
ZHANG Z H, JIN J Y, ZHENG X S, et al.Experimental study on photo-thermal coupling reaction and heat collection based on trough light concentration[J]. Acta energiae solaris sinica, 2022, 43(10): 133-137.
[11] HU X, CHEN F, ZHANG Z H.Model construction and optical properties investigation for multi-sectioned compound parabolic concentrator with particle swarm optimization[J]. Renewable energy, 2021, 179: 379-394.
[12] AZAD A K, PARVIN S.Bibliometric analysis of photovoltaic thermal (PV/T) system: from citation mapping to research agenda[J]. Energy reports, 2022, 8:2699-2711.
[13] YANO A, COSSU M.Energy sustainable greenhouse crop cultivation using photovoltaic technologies[J]. Renewable and sustainable energy reviews, 2019, 109:116-137.
[14] MAGADLEY E, TEITEL M, PERETZ M F, et al.Outdoor behaviour of organic photovoltaics on a greenhouse roof[J]. Sustainable energy technologies and assessments, 2020, 37: 100641.
[15] WANG K, PANTALEO A M, HERRANDO M, et al.Spectral-splitting hybrid PV-thermal (PVT) systems for combined heat and power provision to dairy farms[J]. Renewable energy, 2020, 159: 1047-1065.
[16] 于苗苗, 侯静, 常泽辉, 等. 设施农业用槽式太阳能聚光电热联供系统性能分析与试验[J]. 农业工程学报, 2016, 32(16): 188-192.
YU M M, HOU J, CHANG Z H, et al.Performance analysis and test for through concentrating photovoltaic/thermal system applied in facility agriculture[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(16):188-192.
[17] 康一亭, 张兰兰, 范满, 等. 聚光型光伏系统光电耦合性能研究[J]. 太阳能学报, 2022, 43(8): 33-40.
KANG Y T, ZHANG L L, FAN M, et al.Study on photoelectric coupling performance of concentrating photovoltaic system[J]. Acta energiae solaris sinica, 2022, 43(8): 33-40.
[18] 郭帅军, 刘雪东, 姜洪峰, 等. 槽式复合多曲面聚光光伏光热供能装置性能分析[J]. 东北电力大学学报, 2021, 41(1): 8-14.
GUO S J, LIU X D, JIANG H F, et al.Performance study of a novel trough type compound parabolic concentration photovoltaic thermal device[J]. Journal of Northeast Electric Power University, 2021, 41(1): 8-14.
[19] 常泽辉, 刘雪东, 刘静, 等. 吸收体形状对太阳能复合多曲面聚光器光热性能的影响[J]. 光学学报, 2022, 42(5): 0508001.
CHANG Z H, LIU X D, LIU J, et al.Influence of absorber shape on photothermal performance of solar compound multi-surface concentrator[J]. Acta optica sinica, 2022, 42(5): 0508001.
[20] CHANG Z H, PENG Y N, LIU X D, et al.Performance analysis of compound parabolic concentration photothermal and photoelectricity device for soil heating in facility agriculture[J]. Transactions of Tianjin University, 2022, 28(2): 144-152.
[21] XU H Y, XU C, LI S K, et al.A beam-down solar concentrator with a fixed focus-design and performance analysis[J]. Solar energy,2022, 241: 428-436.
[22] 王平, 倪磊, 王林泓, 等. 透明隔热膜对改善光伏组件温度和发电效率的研究[J]. 太阳能学报, 2021, 42(2): 396-402.
WANG P, NI L, WANG L H, et al.Study on transparent insulating film improving temperature and generating efficiency of photovoltaic modules[J]. Acta energiae solaris sinica, 2021, 42(2): 396-402.
基金
内蒙古自治区重点研发和成果转化计划(科技支撑乡村振兴)(2022YFXZ0021); 中央引导地方科技发展资金项目(2022ZY0085); 呼伦贝尔市“科技兴市”行动重点专项(成果转化)项目(2022HZZX004)