基于稀疏增强动力学模态分解的风力机尾流模型研究

张虎, 许昌, 魏赏赏, 霍志红, 韩星星, 薛飞飞

太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 681-690.

PDF(3512 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3512 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (7) : 681-690. DOI: 10.19912/j.0254-0096.tynxb.2023-0406

基于稀疏增强动力学模态分解的风力机尾流模型研究

  • 张虎, 许昌, 魏赏赏, 霍志红, 韩星星, 薛飞飞
作者信息 +

STUDY ON WAKE MODEL OF WIND TURBINE BASED ON SPARSITY PROMOTING DYNAMIC MODE DECOMPOSITION

  • Zhang Hu, Xu Chang, Wei Shangshang, Huo Zhihong, Han Xingxing, Xue Feifei
Author information +
文章历史 +

摘要

基于稀疏增强动力学模态分解(SPDMD)方法对风力机尾流大涡模拟(LES)结果开展降阶模型研究,并将分解结果与标准DMD方法进行比较。结果表明,动力学模态分解方法能提取尾流动态特征,揭示风力机尾流演化规律。标准DMD方法倾向于选择具有小尺度和高频率的模态,而SPDMD方法选择具有低频率的大尺度流动特征。相比于标准DMD方法,SPDMD方法在低维子空间上建立风力机非定常尾流场的降阶模型,以较少的模态数目重构和预测风力机尾流场,可提高计算效率。

Abstract

This study investigates the reduced-order model of wind turbine wakes based on the sparsity promoting dynamic mode decomposition (SPDMD) method using large eddy simulation (LES) results. A comparison is made between the decomposition outcomes obtained from SPDMD and the standard DMD method. The findings demonstrate that the dynamic mode decomposition approach can extract the dynamic characteristics of wake flow, thereby revealing the underlying evolution patterns of wind turbine wakes. The standard DMD method tends to prioritize modes with small scales and high frequencies, whereas the SPDMD method selects large-scale flow features with low frequencies. In comparison to the standard DMD method, the SPDMD approach constructs a reduced-order model of wind turbine unsteady wake fields in a lower-dimensional subspace. By utilizing a smaller number of modes, the SPDMD method improves computational efficiency in the reconstruction and prediction of wind turbine wake fields.

关键词

风力机 / 尾流 / 动力学模态分解 / 降阶模型

Key words

wind turbines / wakes / dynamic mode decomposition / reduced-order model

引用本文

导出引用
张虎, 许昌, 魏赏赏, 霍志红, 韩星星, 薛飞飞. 基于稀疏增强动力学模态分解的风力机尾流模型研究[J]. 太阳能学报. 2024, 45(7): 681-690 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0406
Zhang Hu, Xu Chang, Wei Shangshang, Huo Zhihong, Han Xingxing, Xue Feifei. STUDY ON WAKE MODEL OF WIND TURBINE BASED ON SPARSITY PROMOTING DYNAMIC MODE DECOMPOSITION[J]. Acta Energiae Solaris Sinica. 2024, 45(7): 681-690 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0406
中图分类号: TK89   

参考文献

[1] SANDERSE B, PIJL S P, KOREN B.Review of computational fluid dynamics for wind turbine wake aerodynamics[J]. Wind energy, 2011, 14(7): 799-819.
[2] STEVENS R J A M, MENEVEAU C. Flow structure and turbulence in wind farms[J]. Annual review of fluid mechanics, 2017, 49: 311-339.
[3] BARTHELMIE R J, HANSEN K, FRANDSEN S T, et al.Modelling and measuring flow and wind turbine wakes in large wind farms offshore[J]. Wind energy, 2009, 12(5): 431-444.
[4] 李雄威, 徐家豪, 朱润泽, 等. 基于偏航尾流模型的风电场功率协同优化研究[J]. 太阳能学报, 2022, 43(10): 144-151.
LI X W, XU J H, ZHU R Z, et al.Study on power collaborative optimization of wind farm based on yaw wake model[J]. Acta energiae solaris sinica, 2022, 43(10): 144-151.
[5] IVANELL S, LEWEKE T, SARMAST S, et al.Comparison between experiments and Large-Eddy Simulations of tip spiral structure and geometry[J]. Journal of physics: conference series, 2015, 625: 012018.
[6] 许昌, 黄海琴, 施晨, 等. 基于LBM-LES方法的典型复杂地形作用下风力机尾流数值模拟[J]. 中国电机工程学报, 2020, 40(13): 4236-4244.
XU C, HUANG H Q, SHI C, et al.Numerical simulation of wind turbine wakes in typical complex terrains based on LBM-LES method[J]. Proceedings of the CSEE, 2020, 40(13): 4236-4244.
[7] GHOREYSHI M, JIRÁSEK A, CUMMINGS R M. Reduced order unsteady aerodynamic modeling for stability and control analysis using computational fluid dynamics[J]. Progress in aerospace sciences, 2014, 71: 167-217.
[8] BRUNTON S L, NOACK B R.Closed-loop turbulence control: progress and challenges[J]. Applied mechanics reviews, 2015, 67(5): 050801.
[9] XIAO D, YANG P, FANG F, et al.Non-intrusive reduced order modelling of fluid-structure interactions[J]. Computer methods in applied mechanics and engineering, 2016, 303: 35-54.
[10] SCHMID P J.Dynamic mode decomposition of numerical and experimental data[J]. Journal of fluid mechanics, 2010, 656: 5-28.
[11] NOACK B R.From snapshots to modal expansions-bridging low residuals and pure frequencies[J]. Journal of fluid mechanics, 2016, 802: 1-4.
[12] TABIB M, SIDDIQUI M S, FONN E, et al.Near wake region of an industrial scale wind turbine: comparing LES-ALM with LES-SMI simulations using data mining (POD)[J]. Journal of physics: conference series, 2017, 854: 012044.
[13] ANDERSEN S J, SØRENSEN J N, MIKKELSEN R F. Turbulence and entrainment length scales in large wind farms[J]. Philosophical transactions series a, mathematical, physical, and engineering sciences, 2017, 375(2091): 20160107.
[14] FORTES-PLAZA A, CAMPAGNOLO F, WANG J, et al.A POD reduced-order model for wake steering control[J]. Journal of physics: conference series, 2018, 1037: 032014.
[15] 寇家庆, 张伟伟. 动力学模态分解及其在流体力学中的应用[J]. 空气动力学学报, 2018, 36(2): 163-179.
KOU J Q, ZHANG W W.Dynamic mode decomposition and its applications in fluid dynamics[J]. Acta aerodynamica sinica, 2018, 36(2): 163-179.
[16] SARMAST S, DADFAR R, MIKKELSEN R F, et al.Mutual inductance instability of the tip vortices behind a wind turbine[J]. Journal of fluid mechanics, 2014, 755: 705-731.
[17] DEBNATH M, SANTONI C, LEONARDI S, et al.Towards reduced order modelling for predicting the dynamics of coherent vorticity structures within wind turbine wakes[J]. Philosophical transactions series a, mathematical, physical, and engineering sciences, 2017, 375(2091): 20160108.
[18] PREMARATNE P, HU H. Analysis of turbine wake characteristics by using dynamic mode decomposition method[C]//Proceedings of the 35th AIAA Applied Aerodynamics Conference. Denver, Colorado, 2017: AIAA2017-4214.
[19] SUN C, TIAN T, ZHU X C, et al.Investigation of the near wake of a horizontal-axis wind turbine model by dynamic mode decomposition[J]. Energy, 2021, 227: 120418.
[20] CASSAMO N, VAN WINGERDEN J W. On the potential of reduced order models for wind farm control: a koopman dynamic mode decomposition approach[J]. Energies, 2020, 13(24): 6513.
[21] JOVANOVIĆ M R, SCHMID P J, NICHOLS J W.Sparsity-promoting dynamic mode decomposition[J]. Physics of fluids, 2014, 26(2): 024301.
[22] GAO M, CAO X Q, LIU B N, et al.Comparison of the atmospheric 200 hPa jet's analyses between proper orthogonal decomposition and advanced dynamic mode decomposition method[J]. Advances in meteorology, 2020, 2020(4): 1-15.
[23] BOYD S, PARIKH N, CHU E, et al.Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and trends® in machine learning, 2011, 3(1): 1-122.
[24] VAN DER LAAN M P, SØRENSEN N N, RÉTHORÉ P E, et al. An improved k-ε model applied to a wind turbine wake in atmospheric turbulence[J]. Wind energy, 2015, 18(5): 889-907.
[25] DAI X, XU D, ZHANG M Q, et al.A three-dimensional dynamic mode decomposition analysis of wind farm flow aerodynamics[J]. Renewable energy, 2022, 191: 608-624.

基金

中央高校基本科研业务费专项资金(B210201018); 江苏省政策引导类计划(国际科技合作/港澳台科技合作)(BZ2021019); 国家自然科学基金(52106238)

PDF(3512 KB)

Accesses

Citation

Detail

段落导航
相关文章

/