海上风力机防护装置径高比影响研究

苏欢欢, 葛昕, 岳敏楠, 缪维跑, 李春, 刘青松

太阳能学报 ›› 2025, Vol. 46 ›› Issue (3) : 602-610.

PDF(2495 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2495 KB)
太阳能学报 ›› 2025, Vol. 46 ›› Issue (3) : 602-610. DOI: 10.19912/j.0254-0096.tynxb.2023-1884

海上风力机防护装置径高比影响研究

  • 苏欢欢1, 葛昕1, 岳敏楠1,2, 缪维跑1,2, 李春1,2, 刘青松1
作者信息 +

STUDY ON INFLUENCE OF DIAMETER-TO-HEIGHT RATIO OF OFFSHORE WIND TURBINE PROTECTIVE DEVICES

  • Su Huanhuan1, Ge Xin1, Yue Minnan1,2, Miao Weipao1,2, Li Chun1,2, Liu Qingsong1
Author information +
文章历史 +

摘要

为分析海上风力机受船舶撞击时径高比对防护装置性能的影响,采用ANSYS/LS-DYNA软件研究不同径高比Ogden、Mooney-Rivlin本构橡胶及泡沫铝防护装置抗撞性能及变形模式。结果表明:随着径高比的增大,两种本构橡胶装置最大凹陷深度变化呈现相反的趋势。当径高比为2.061时,泡沫铝装置最大凹陷深度降低60.5%,泡沫铝材料最大接触力升高28.05%,Ogden材料和Mooney-Rivlin材料橡胶防护装置最大接触力分别降低27.9%和14.5%。防护装置防护效果受局部凹陷及整体弯曲引起的塑性变形影响,随着径高比的变化,装置变形形式改变影响不同本构材料防护装置抗撞性能:当径高比小于1.5、壁厚小于3 m时,防护装置变形以局部凹陷为主;当径高比大于1.5、厚度大于5 m时,防护装置主要产生弯曲变形。

Abstract

In order to analyze the influence of the diameter-to-height ratio on the performance of the protective device when the offshore wind turbine is impacted by the ship, this paper uses ANSYS/LS-DYNA software to study the anti-collision performance and deformation mode of Ogden, Mooney-Rivlin constitutive rubber and aluminum foam protective device with different diameter-to-height ratios. The results show that with the increase of the ratio of diameter to height, the change of the maximum depression depth of the two constitutive rubber devices shows an opposite trend. When the diameter-height ratio is 2.061, the maximum depression depth of the foam aluminum device is reduced by 60.5%, the maximum contact force of the foam aluminum material is increased by 28.05%, and the maximum contact force of the Ogden material and Mooney-Rivlin material rubber protection device is reduced by 27.9% and 14.5%. The protective effect of the protective device is affected by the plastic deformation caused by local depression and overall bending. With the change of the diameter-height ratio, the change of the deformation form of the device affects the crashworthiness of the protective device with different constitutive materials. When the diameter-height ratio is less than 1.5 and the wall thickness is less than 3 m, the deformation of the protective device is mainly local depression. When the diameter-height ratio is greater than 1.5 and the thickness is greater than 5 m, the protective device mainly produces bending deformation.

关键词

海上风力机 / 碰撞 / 防护装置 / 泡沫铝 / 橡胶 / 本构模型

Key words

offshore wind turbines / collision / protective device / rubber / aluminum foam / constitutive mode

引用本文

导出引用
苏欢欢, 葛昕, 岳敏楠, 缪维跑, 李春, 刘青松. 海上风力机防护装置径高比影响研究[J]. 太阳能学报. 2025, 46(3): 602-610 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1884
Su Huanhuan, Ge Xin, Yue Minnan, Miao Weipao, Li Chun, Liu Qingsong. STUDY ON INFLUENCE OF DIAMETER-TO-HEIGHT RATIO OF OFFSHORE WIND TURBINE PROTECTIVE DEVICES[J]. Acta Energiae Solaris Sinica. 2025, 46(3): 602-610 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1884
中图分类号: TK83   

参考文献

[1] 杨思阳, 陈前, 王瑞良, 等. 海上单桩风力发电机组载荷-基础全工况一体化设计[J]. 太阳能学报, 2024, 45(3): 83-89.
YANG S Y, CHEN Q, WANG R L, et al.Integrated design of load-foundation considering all external conditions for offshore monopile wind turbine[J]. Acta energiae solaris sinica, 2024, 45(3): 83-89.
[2] ZHANG X L, ZHANG B J, WANG D, et al.Fatigue damage analysis method of offshore wind turbine foundation[J]. Ocean engineering, 2024, 302: 117618.
[3] 王强, 毛冰晶, 王小俊, 等. “双碳” 背景下福建海上风电的挑战与机遇[J]. 海洋开发与管理, 2022, 39(10): 91-97.
WANG Q, MAO B J, WANG X J, et al.Challenges and opportunities of Fujian offshore wind power under the background of ‘dual carbon’[J]. Ocean development and management, 2022, 39(10): 91-97.
[4] JIANG D, ZHUANG D F, HUANG Y H, et al.Evaluating the spatio-temporal variation of China’s offshore wind resources based on remotely sensed wind field data[J]. Renewable and sustainable energy reviews, 2013, 24: 142-148.
[5] ZHAO X G, REN L Z.Focus on the development of offshore wind power in China: Has the golden period come?[J]. Renewable energy, 2015, 81: 644-657.
[6] 韩志伟, 李春, 周红杰, 等. 海上风力机基础防护装置在船舶碰撞下的动态响应研究[J]. 机械强度, 2020, 42(1): 21-28.
HAN Z W, LI C, ZHOU H J, et al.Research on dynamic response with crashworthy devices of offshore wind turbine fundation to ship impact[J]. Journal of mechanical strength, 2020, 42(1): 21-28.
[7] DAI L J, EHLERS S, RAUSAND M, et al.Risk of collision between service vessels and offshore wind turbines[J]. Reliability engineering & system safety, 2013, 109: 18-31.
[8] 李润斌, 闵巧玲, 谢朋. 船舶与海上风电升压站平台碰撞仿真分析[J]. 太阳能学报, 2021, 42(7): 437-443.
LI R B, MIN Q L, XIE P.Simulation analysis of collision between ship and offshore electric substation platform[J]. Acta energiae solaris sinica, 2021, 42(7): 437-443.
[9] Global offshore Wind Health and Safety Organisation.2022 Incident Data Report[EB/OL]. (2023-06)[2023-09]. https://www.gplusoffshorewind.com/work-programme/workstreams/statistics.
[10] LE S H, PIRE T, HSIEH J R, et al.New analytical developments to study local and global deformations of an offshore wind turbine jacket impacted by a ship[C]//Proceedings of the 7th International Conference on Collision and Grounding of Ships and Offshore Structures (ICCGS’16). Ulsan, Korea, 2016: 15-18.
[11] JIA H K, QIN S Y, WANG R M, et al.Ship collision impact on the structural load of an offshore wind turbine[J]. Global energy interconnection, 2020, 3(1): 43-50.
[12] LIU C G, HAO E T, ZHANG S B.Optimization and application of a crashworthy device for the monopile offshore wind turbine against ship impact[J]. Applied ocean research, 2015, 51: 129-137.
[13] 周红杰, 丁勤卫, 李春, 等. 防护装置对海上风力机-船舶碰撞动力响应影响的研究[J]. 热能动力工程, 2018, 33(4): 124-131.
ZHOU H J, DING Q W, LI C, et al.Study of the influence of the safety and protection device on the dynamic response of an offshore wind turbine to a collision with a ship[J]. Journal of engineering for thermal energy and power, 2018, 33(4): 124-131.
[14] REN N X, OU J.A crashworthy device against ship-OWE collision and its protection effects on the tower of offshore wind farms[J]. China ocean engineering, 2009, 23: 593-602.
[15] YUE X Z, HAN Z W, LI C, et al.The study on structure design of fender of offshore wind turbine based on fractal feature during collision with ship[J]. Ocean engineering, 2021, 236: 109100.
[16] 龚曙光,边炳传.有限元基本理论及应用[M].武汉:华中科技大学出版社,2022.
GONG S G, BIAN B C.Basic theory and application of finite element[M]. Wuhan: Huazhong University of Science and Technology Press, 2022.
[17] WU S R.A variational principle for dynamic contact with large deformation[J]. Computer methods in applied mechanics and engineering, 2009, 198(21-26): 2009-2015.
[18] LIM H K, LEE J S.On the structural behavior of ship’s shell structures due to impact loading[J]. International journal of naval architecture and ocean engineering, 2018, 10(1): 103-118.
[19] OGDEN R W.Non-linear elastic deformations[M]. Massachusetts: Courier Corporation, 1997.
[20] ERIKSSON A, NORDMARK A.Non-unique response of Mooney-Rivlin model in bi-axial membrane stress[J]. Computers & structures, 2014, 144: 12-22.
[21] 岳新智, 韩志伟, 缪维跑, 等. 分形结构橡胶、泡沫铝海上风力机防护装置性能研究[J]. 太阳能学报, 2023, 44(5): 320-327.
YUE X Z, HAN Z W, MIAO W P, et al.Study on performance of fractal structure rubber and aluminum foam protective device for offshore wind turbine[J]. Acta energiae solaris sinica, 2023, 44(5): 320-327.
[22] HAO E T, LIU C G.Evaluation and comparison of anti-impact performance to offshore wind turbine foundations: Monopile, tripod, and jacket[J]. Ocean engineering, 2017, 130: 218-227.
[23] NOKOB M H, YEUNG R W.Added mass of thin flat plates of arbitrary shapes with possible openings[J]. Applied ocean research, 2018, 79: 149-159.
[24] GU H B, STANSBY P, STALLARD T, et al.Drag, added mass and radiation damping of oscillating vertical cylindrical bodies in heave and surge in still water[J]. Journal of fluids and structures, 2018, 82: 343-356.
[25] 王自力, 蒋志勇, 顾永宁. 船舶碰撞数值仿真的附加质量模型[J]. 爆炸与冲击, 2002, 22(4): 321-326.
WANG Z L, JIANG Z Y, GU Y N.An added water mass model for numerical simulation of ship/ship collisions[J]. Explosion and shock waves, 2002, 22(4): 321-326.
[26] NIE Y H, FANG H, MENG X J.Ship collision mitigation for offshore wind turbine monopile foundations via high-general/low-collision-stiffness steel fenders[J]. Ocean Engineering, 2024, 299: 117272.
[27] ELLINAS C P, WALKER A C.Damage on offshore tubular bracing members[C]//IABSE Colloquium on Ship Collisions With Bridges and Offshore Structures. Copenhagen, Denmark, 1983.
[28] JONES N, BIRCH R S.Low-velocity impact of pressurised pipelines[J]. International journal of impact engineering, 2010, 37(2): 207-219.
[29] CERIK B C, SHIN H K, CHO S R.A comparative study on damage assessment of tubular members subjected to mass impact[J]. Marine structures, 2016, 46: 1-29.
[30] INSTITUTE A P.Recommended practice for planning, designing, and constructing fixed offshore platforms[M]. United States: American Petroleum Institute, 1987.

基金

国家自然科学基金(52375193; 52376204; 52106262); 上海市Ⅳ类高峰学科-能源科学与技术-上海非碳基能源转换与利用研究院建设项目

PDF(2495 KB)

Accesses

Citation

Detail

段落导航
相关文章

/