ANALYSIS OF ENERGY DISTRIBUTION OF PHOTOVOLTAIC MODULE UNDER NON-STANDARD TEST CONDITIONS

Ma Tao, Shen Lu

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (2) : 169-175.

PDF(1799 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1799 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (2) : 169-175. DOI: 10.19912/j.0254-0096.tynxb.2020-0058

ANALYSIS OF ENERGY DISTRIBUTION OF PHOTOVOLTAIC MODULE UNDER NON-STANDARD TEST CONDITIONS

  • Ma Tao, Shen Lu
Author information +
History +

Abstract

Electrical-thermal performance and power loss analysis of PV module are two hot issues in the field of PV research. However, the complex photoelectric conversion mechanism and the variable operating conditions pose great challenges. This paper develops a coupled energy distribution model for PV modules under non-standard test condition, integrating the five-parameter electrical mode, heat resistance model and loss model. The coupled model is verified by comparing simulated and measured electrical-thermal performance. Operating performance and energy distribution of the PV module under non-standard test condition is also discussed in detail. The results show that on a typical day, 21.9% of the incident solar energy is reflected, 14.3% is converted into electricity, and the rest(63.8%) is dissipated as the heat. More than half of these heat losses come from spectral mismatch losses, including sub-bandgap and thermalization loss.

Key words

photovoltaic modules / energy distribution / thermal management / energy loss mechanism / comprehensive performance

Cite this article

Download Citations
Ma Tao, Shen Lu. ANALYSIS OF ENERGY DISTRIBUTION OF PHOTOVOLTAIC MODULE UNDER NON-STANDARD TEST CONDITIONS[J]. Acta Energiae Solaris Sinica. 2022, 43(2): 169-175 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0058

References

[1] MA T, YANG H X, LU L.Development of a model to simulate the performance characteristics of crystalline silicon photovoltaic modules/strings/arrays[J]. Solar energy, 2014, 100: 31-41.
[2] BLAIR N, MEHOS M, CHRISTENSEN C, et al.Sensitivity of concentrating solar power trough performance, cost, and financing with the solar advisor model[C]//Presented at SOLAR 2008-American Solar Energy Society (ASES), San Diego, California, USA, 2008.
[3] MAKRIDES G, ZINSSER B, SCHUBERT M, et al.Energy yield prediction errors and uncertainties of different photovoltaic models[J]. Progress in photovoltaics research and applications, 2013, 21(4): 500-516.
[4] SIDDIQUI M U, ABIDO M.Parameter estimation for five- and seven-parameter photovoltaic electrical models using evolutionary algorithms[J]. Applied soft computing, 2013, 13(12): 4608-4621.
[5] TOWNSEND T U.A method for estimating the long-term performance of direct-coupled photovoltaic systems[D]. University of Wisconsin-Madison, 1989.
[6] KING D L, KRATOCHVIL J A, BOYSON W E.Photovoltaic array performance mode[R]. Albuquerque, New Mexico: Sandia National Laboratories, 2004.
[7] VOGT M R, HOLST H, WINTER M, et al.Numerical modeling of c-Si PV modules by coupling the semiconductor with the thermal conduction, convection and radiation equations[J]. Energy procedia, 2015, 77: 215-224.
[8] TINA G M, SCROFANI S.Electrical and thermal model for PV module temperature evaluation[C]//The 14th IEEE Mediterranean Electrotechnical Conference, Ajaccio, France, 2008.
[9] SHANG A X, LI X F.Photovoltaic devices: opto-electro-thermal physics and modeling[J]. Advanced materials, 2017, 29(8): 1603492.
[10] 魏世超. 电热冷联产光伏/辐射板的性能研究[D]. 天津:天津大学, 2015.
WEI S C.Performance study on an electricity-heating-cooling cogeneration photovoltaic radiant panel[D]. Tianjin: Tianjin University, 2015.
[11] ZHANG C, CAO G Y, WU S L, et al.Thermodynamic loss mechanisms and strategies for efficient hot-electron photoconversion[J]. Nano energy, 2019, 55: 164-172.
[12] NELSON C A, MONAHAN N R, ZHU X Y.Exceeding the Shockley-Queisser limit in solar energy conversion[J]. Energy & environmental science, 2013, 6(12): 3508-3519.
[13] HIRST L C, EKINS-DAUKES N J. Fundamental losses in solar cells[J]. Progress in photovoltaics research and applications, 2011, 19(3): 286-293.
[14] WATMUFF J H, CHARTERS W W W S, PROCTOR D. Solar and wind induced external coefficients-Solar collectors[J]. Cooperation Mediterraneenne pour ÍEnergie Solaire, 1977, 1: 56.
[15] INCROPERA F P, DEWITT D P.Fundamentals of heat and mass transfer[M]. 3rd edition. New York: Wiley,1990.
[16] DUPRÉ O, VAILLON R, GREEN M A.A full thermal model for photovoltaic devices[J]. Solar energy, 2016, 140: 73-82.
[17] WÜRFEL P. Physics of solar cells: from principles to new concepts[M]. Wiley, 2005.
[18] KOSTEN E D, ATWATER H A.Limiting acceptance angle to maximize efficiency in solar cells[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2011, 8124(38): 103-112.
[19] GREEN M A.Radiative efficiency of state-of-the-art photovoltaic cells[J]. Progress in Photovoltaics: research and applications, 2012, 20(4): 472-476.
[20] NELSON J.太阳能电池物理[M]. 高扬, 译. 上海: 上海交通大学出版社, 2011.
NELSON J.The physics of solar cells[M]. Translation by Gao Yang. Shanghai: Shanghai Jiaotong University Press, 2011.
[21] HAEDRICH I, EITNER U, WIESE M, et al.Unified methodology for determining CTM ratios: systematic prediction of module power[J]. Solar energy materials and solar cells, 2014, 131: 14-23.
PDF(1799 KB)

Accesses

Citation

Detail

Sections
Recommended

/