NOVEL QUASI-Z-SOURCE INVERTER WITH VOLTAGE MULTIPLIER CELL

Li Kai, Hao Yangyang, Li Haibin, Wei Zhengyi, Liu Yun, Ding Xinping

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (2) : 182-188.

PDF(2725 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2725 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (2) : 182-188. DOI: 10.19912/j.0254-0096.tynxb.2020-0211

NOVEL QUASI-Z-SOURCE INVERTER WITH VOLTAGE MULTIPLIER CELL

  • Li Kai, Hao Yangyang, Li Haibin, Wei Zhengyi, Liu Yun, Ding Xinping
Author information +
History +

Abstract

Aiming at the existing technical defects, this paper proposed a high-boost single-stage inverter(VMC-qZSI), which uses voltage multiplier units of DC-link and shoot-through state of inverter-link to realize dual degree of freedom adjustment of the AC output voltage by the coupled-inductor turns ratio n and shoot-through duty cycle D. A high voltage gain can be obtained when the D is small. The working mode of the new toplogy, voltage and current relationship between each component, and the comparison of the total switching power of three phase bridge type inverters are, described. On this basis, the relationship between the boost ratio and the efficiency of the inverter under the parasitic conditions is deduced. An 850 W prototype was built in the laboratory to verify the validity of the proposed inverter. Experimental results prove the validity and feasibility of the proposed inverters.

Key words

photovoltaic / inverters / efficiency / quasi-Z-source / topology / high gain

Cite this article

Download Citations
Li Kai, Hao Yangyang, Li Haibin, Wei Zhengyi, Liu Yun, Ding Xinping. NOVEL QUASI-Z-SOURCE INVERTER WITH VOLTAGE MULTIPLIER CELL[J]. Acta Energiae Solaris Sinica. 2022, 43(2): 182-188 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0211

References

[1] 钱为, 徐政, 陈锐坚. 风光互补提水系统的研究与开发[J]. 太阳能学报, 2019, 40(9): 2479-2485.
QIAN W, XU Z, CHEN R J.Research and development of hybrid PV-wind pumping systems[J]. Acta energiae solaris sinica, 2019, 40(9): 2479-2485.
[2] FU J Z, S M. Energy management strategy based on weather condition for photovoltaic-energy storage integrated power system[J]. Power system protection and control, 2018, 46(24): 142-149.
[3] 魏腾飞, 王晓兰, 伏勇宏. 光伏反激并网逆变器输出电流质量的改善[J]. 太阳能学报, 2019, 40(12): 3534-3540.
WEI T F, WANG X L, FU Y H.Improvement of current quality of photovoltaic flyback grid-connected inverters[J]. Acta energiae solaris sinica, 2019, 40(12): 3534-3540.
[4] PENG F Z.Z-source inverter[J]. IEEE transactions on industry application, 2003, 39(2): 504-510.
[5] 甘世红, 褚建新, 顾伟, 等. 基于LCL滤波器的新型Z源光伏并网逆变器[J]. 太阳能学报, 2017, 38(6): 1577-1583.
GAN S H, ZHU J X, GU W, et al.A new Z - source grid-connected photovoltaic inverter based on LCL filter[J]. Acta energiae solaris sinica, 2017, 38(6): 1577-1583.
[6] 刘鸿鹏, 王卫, 吴辉. 基于单周期Z源电容电压调节的并网电流控制策略[J]. 太阳能学报, 2014, 35(6): 979-984.
LIU H P, WANG W, WU H.Control strategy of on-grid current based on one-cycle Z-source capacitor voltage-change adjustment[J]. Acta energiae solaris sinica, 2016, 37(11): 2965-2972.
[7] 王晓刚, 肖立业. Z源LCL型光伏并网逆变器的综合控制策略[J]. 太阳能学报, 2016, 37(11): 2965-2972.
WANG X G, XIAO L Y.Comprehensive control strategy of LCL-based Z-source photovoltaic grid-connected inverter[J]. Acta energiae solaris sinica, 2016, 37(11): 2965-2972.
[8] UMARANI D, SEYEZHAI R.Study of Z-source inverter impedance networks using 2ω analysis for photovoltaic applications[J]. Applied mechanics & materials, 2016, 852(2): 867-874.
[9] LI T, CHENG Q M.A comparative study of Z-source inverter and enhanced topologies[J]. China Electrotechnical Society transactions on electrical machines and systems, 2018, 2(3): 284-288.
[10] DEHGHAN S M, MOHAMADIAN M, GHAREHANI R.Analysis and carrier-based modulation of Z-source NPC inverters[J]. International journal of electronics, 2012, 99(8): 1075-1099.
[11] LIU J F, WU J L, QIU J Y.Switched Z-source/quasi-Z-source DC-DC converters with reduced passive components for photovoltaic systems[J]. IEEE access, 2019, 7(1): 40893-40903.
[12] NAOKI K, RYUJI I, TAKANORI I.Loss analysis of quasi Z-source inverter with superjunction-MOSFET[J]. Electrical engineering in Japan, 2018, 205(2): 54-61.
[13] QIAN W, PENG F Z, CHA H.Trans-Z-source inverters[J]. IEEE transactions on power electronics, 2011, 26(12): 3453-3463.
[14] LOH P C, LI D, BLAABJERG F.Γ-Z-source inverters[J]. IEEE transactions on power electronics, 2013, 28(11): 4880-4884.
[15] NGUYEN M K, LIM Y C, PARK S J.Improved trans-Z-source inverter with continuous input current and boost inversion capability[J]. IEEE transactions on power electronics, 2013, 28(10): 4500-4510.
[16] ZESHAN A, MOIN H.Operational analysis of improved Γ-Z-source inverter with clamping diode and its comparative evaluation[J]. IEEE transactions on industrial electronics, 2017, 64(12): 9191-9200.
PDF(2725 KB)

Accesses

Citation

Detail

Sections
Recommended

/