NUMERICAL STUDY ON INFLUENCE OF SOLIDITY ON PERFORMANCE OF DUCTED TIDAL TURBINE

Cui Baoyu, Si Xiancai, Yuan Peng, Liu Yonghui, Yang Hongyan, Chen Jianmei

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (2) : 69-74.

PDF(2001 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2001 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (2) : 69-74. DOI: 10.19912/j.0254-0096.tynxb.2020-0234

NUMERICAL STUDY ON INFLUENCE OF SOLIDITY ON PERFORMANCE OF DUCTED TIDAL TURBINE

  • Cui Baoyu1, Si Xiancai1,2, Yuan Peng1,2, Liu Yonghui1, Yang Hongyan1, Chen Jianmei3
Author information +
History +

Abstract

The aim of this study was to investigate the influence of rotor solidity on performance of the ducted tidal turbine. The three-dimensional numerical model of the ducted tidal turbine was established. CFD method was used to investigate the performance parameters, flow field velocity and pressure distribution of the ducted tidal turbine with different solidity blades. By comparing the results, it is showed that variation of blade solidity has significant influence on hydrodynamic performance of ducted turbine working in rated tidal stream velocity. The maximum power coefficient of the turbine decreases with the increase of solidity. Moreover, the ducting effect of the shroud on the fluid velocity growth with the increase of rotor's solidity is weakened.

Key words

tidal power / CFD / tidal turbine / performance coefficient / solidity

Cite this article

Download Citations
Cui Baoyu, Si Xiancai, Yuan Peng, Liu Yonghui, Yang Hongyan, Chen Jianmei. NUMERICAL STUDY ON INFLUENCE OF SOLIDITY ON PERFORMANCE OF DUCTED TIDAL TURBINE[J]. Acta Energiae Solaris Sinica. 2022, 43(2): 69-74 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0234

References

[1] KHAN M J, BHUYAN G, IQBAL M T, et al.Hydrokinetic energy conversion systems and assessment of horizontal and verticalaxis turbines for river and tidal applications: a technology status review[J]. Applied energy, 2009, 86: 1823-1835.
[2] LUND H.Renewable energy strategies for sustainable development[J]. Energy, 2007, 86: 912919.
[3] PANWAR N L, KAUSHIK S C, KOTHARI S.Role of renewable energy sources in environmental protection: areview[J]. Renewable and sustainable energy reviews, 2011, 15: 1513-1524.
[4] LEROUX T, OSBOURNE N, GROULX D.Numerical study into horizontal tidal turbine wake velocity deficit: Quasi-steady state and transient approaches[J]. Ocean engineering, 2019, 181: 240-251.
[5] 施伟勇, 王传崑, 沈家法. 中国的海洋能资源及其开发前景展望[J]. 太阳能学报, 2011, 32(6): 913-923.
SHI W Y, WANG C K, SHEN J F.Utilization and prospect of ocean energy resource in China[J]. Acta energiae solaris sinica, 2011, 32(6): 913-923.
[6] 吕忻, 郭佩芳. 我国潮流能资源开发评述[J]. 海洋湖沼通报, 2011(1): 26-30.
LYU X, GUO P F.Review of China's tidal energy development[J]. Transactions of oceannology and limnology, 2011(1): 26-30.
[7] MANSOURN K, MESKINKHODA P.Computational analysis of flow fields around flanged diffusers[J]. Journal of wind engineering and industrial aerodynamics, 2014, 124: 109-120.
[8] SILVA P, DEBORAH A T D, BRITTO V, et al. A new approach for the design of diffuser-augmented hydro turbines using the blade element momentum[J]. Energy conversion and management, 2018, 165: 801-814.
[9] 吴百公, 赵阳, 欧贤坤, 等. 水平轴潮流能发电机叶片的桨距角和实度对叶轮启动性能和效率的影响[J]. 太阳能学报, 2015, 36(10): 2417-2421.
WU B G, ZHAO Y, OU X K, et al.The influence of pitch angle and solidity of horizontal axis tidal current turbine's blade on turbine's start-up capacity and efficiency[J]. Acta energiae solaris sinica, 2015, 36(10): 2417-2421.
[10] MORRIS C.Influence of solidity on the performances, swirl characteristics, wake recovery and blade deflection of a horizontal axis tidal turbine[D]. Cardiff: Cardiff University, 2014.
[11] GARDEN D L F. An investigation of river kintic turbines performance enhancements, turbine modelling techniques, and an assessment of turbulence models[D]. Manitoba: University of Manitoba, 2007.
[12] ALLSOP S, PEYRARD C, THIES P R, et al.Hydrodynamic analysis of a ducted, opencentre tidal stream turbine using blade element momentum theory[J]. Ocean engineering, 2017, 141: 531-542.
[13] BAHAJ A S, BATTEN W M J, MCCANN G. Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines[J]. Renewable energy, 2007, 32(15): 2479-2490.
[14] 张礼达, 任腊春, 陈荣盛, 等. 风力机叶片外形设计及三维实体建模研究[J]. 太阳能学报, 2008, 29(9): 1177-1180.
ZHANG L D, REN L C, CHEN R S, et al.Shape design and 3D modeling study for blades of wind turbine[J]. Acta energiae solaris sinica, 2008, 29(9): 1177-1180.
[15] MAIA L, PAULO J, RIBEIRO J, et al.Experimental and numerical study of diffuser augmented wind turbine-DAWT[C]//Proceedings IRF2018: 6th International Conference Integrity-Reliability-Failure, Lisbon, 2018.
[16] KERDOUSS F, BANNARI A, PROULX P.CFD modeling of gas dispersion and bubble size in a double turbine stirred tank[J]. Chemical engineering science, 2006, 61: 3313-3322.
[17] LI Y W, JUNPAIK K, XING T, et al.Carricac Dynamic overset CFD simulations of wind turbine aerodynamics[J]. Renewable energy, 2012, 37: 285-298.
[18] MOHAMED M H, SHAABAN S.Optimization of blade pitch angle of an axial turbine used for wave energy conversion[J]. Energy, 2013, 56: 229-239.
PDF(2001 KB)

Accesses

Citation

Detail

Sections
Recommended

/