RESEARCH ON DIRECT POWER CONTROL OF VOLTAGE-TYPE RECTIFIER BASED ON VIRTUAL MAGNETIC FLUX MODEL PREDICTION

Zhou Zhenxiong, Liu Bingshen, Wang Wenbao, Peng Hongyi, Zhang Zhimin, Wang Hongxi

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (2) : 136-143.

PDF(5849 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(5849 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (2) : 136-143. DOI: 10.19912/j.0254-0096.tynxb.2020-0238

RESEARCH ON DIRECT POWER CONTROL OF VOLTAGE-TYPE RECTIFIER BASED ON VIRTUAL MAGNETIC FLUX MODEL PREDICTION

  • Zhou Zhenxiong1, Liu Bingshen1,2, Wang Wenbao1, Peng Hongyi1, Zhang Zhimin1, Wang Hongxi1
Author information +
History +

Abstract

In this paper, a direct power control (DPC) system of voltage-type PWM rectifier (VSR) is studied. Aiming at the error of model prediction and estimation when using magnetic virtual flux to realize voltage observation without voltage sensor, a virtual magnetic flux model predictive direct power control strategy based on Newton interpolation principle to modify the model observation voltage is proposed. The Newton interpolation method is used to correct the estimated voltage of the power grid, and the internal model feedback correction is introduced to correct the errors generated by the instantaneous power model prediction at adjacent moments, so as to improve the SVPWM control voltage of the rectifier. The above method can achieve more stable power tracking, reduce the amount of overshoot caused by the start-up and regulation, effectively reduce the harmonic on the grid side of the rectifier to achieve the purpose of green rectification. Simulation comparison analysis and test results show that the VSR controlled by the above control strategy has good output quality of DC side voltage, strong anti-interference and low harmonics on grid side, and can effectively achieve green rectification and high power factor of DC output voltage.

Key words

PWM rectifier / direct power control / model prediction / virtual magnetic flux / Newton interpolation / internal model feedback correction

Cite this article

Download Citations
Zhou Zhenxiong, Liu Bingshen, Wang Wenbao, Peng Hongyi, Zhang Zhimin, Wang Hongxi. RESEARCH ON DIRECT POWER CONTROL OF VOLTAGE-TYPE RECTIFIER BASED ON VIRTUAL MAGNETIC FLUX MODEL PREDICTION[J]. Acta Energiae Solaris Sinica. 2022, 43(2): 136-143 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0238

References

[1] 史文婷. 无电网电压传感器的PWM整流器改进无差拍功率预测控制[D]. 西安: 西安理工大学, 2019.
SHI W T.Improved deadbeat power predictive control of PWM rectifier without grid voltage sensors[D]. Xi'an: Xi'an University of Technology, 2019.
[2] 陈伟丽, 刘沛津, 彭莉峻, 等. 一种基于改进模型预测控制算法的空间矢量PWM虚拟磁链直接功率控制策略[J]. 电测与仪表, 2019, 56(14): 110-115, 136.
CHEN W L, LIU P J, PENG L J, et al.A strategy of space vector PWM virtual flux direct power control strategy based on improved model predictive control algorithm[J]. Electrical measurement & instrumentation, 2019, 56(14): 110-115, 136.
[3] 张帆, 刘跃敏, 范波, 等. 基于模型预测的三相PWM整流器直接功率控制[J]. 电机与控制应用, 2016, 43(7): 27-31.
ZHANG F, LIU Y M, FAN B, et al.Direct power control for three-phase PWM rectifiers based on model predictive[J]. Electric machines & control application, 2016, 43(7): 27-31.
[4] 卢子广, 林远, 胡立坤, 等. 新型三相PWM整流器无交流电压传感器控制方法[J]. 电力自动化设备, 2017, 37(5): 28-33, 47.
LU Z G, LIN Y, HU L K, et al.Three-phase PWM rectifier control without AC-voltage sensors[J]. Electric power automation equipment, 2017, 37(5): 28-33, 47.
[5] 姬小豪, 陈星弢, 蒋伟毅, 等. 虚拟磁链定向的三相电压型PWM整流器模型预测直接功率控制[J]. 电力系统及其自动化学报, 2018, 30(1): 121-126.
JI X H, CHEN X T, JIANG W Y, et al.Virtual flux based model predictive direct power control for three-phase voltage sourced PWM rectifier[J]. Proceedings of the CSU-EPSA, 2018, 30(1): 121-126.
[6] XIA Y, GOU B, XU Y.A new ensemble-based classifier for IGBT open-circuit fault diagnosis in three-phase PWM converter[J]. Protection and control of modern power systems, 2018, 3(1): 33.
[7] ZHANG B, ZHONG Q, MA J E, et al.Self-correcting PWM control for dynamic performance preservation in high speed on/off valve[J]. Mechatronics, 2018, 55: 141-150.
[8] LI Y, ZHOU Q, LIU P, et al.Simulation for accelerator dynamic power supply based on current-source PWM rectifier[J]. Radiation detection technology and methods, 2018, 2(2): 1-7.
[9] 张继元, 宁佳, 舒杰, 等. 基于非线性反馈的光伏模拟器控制策略[J]. 太阳能学报, 2019, 40(7): 1920-1927.
ZHANG J Y, NING J, SHU J, et al.Control strategy of photovoltaic simulator based on nonlinear feedback[J]. Acta energiae solaris sinica, 2019, 40(7): 1920-1927.
[10] 宋文斌, 王辉, 张潇, 等. 改进型电压型PWM整流器预测直接功率控制[J]. 控制工程, 2016, 23(2): 227-232.
SONG W B, WANG H, ZHANG X, et al.Improved predictive direct power control of three phase pwm rectifier[J]. Control engineering of China, 2016, 23(2): 227-232.
[11] 罗德荣, 周小艳, 姬小豪, 等. 基于虚拟磁链的PWM整流器模型预测直接功率控制[J]. 电力自动化设备, 2017, 37(12): 123-129.
LUO D R, ZHOU X Y, JI X H, et al.Virtual-flux-based model predictive direct power control for PWM rectifiers[J]. Electric power automation equipment, 2017, 37(12): 123-129.
[12] 危伟, 马辉. 基于线性自抗扰的脉宽调制整流器预测直接功率控制[J]. 三峡大学学报(自然科学版), 2019, 41(4): 67-71, 101.
WEI W, M H. Predictive direct power control of pwm rectifier based on linear active disturbance rejection[J]. Journal of China Three Gorges University(natural sciences), 2019, 41(4): 67-71, 101.
[13] 刘建林, 罗德荣, 周小艳. 三相电压型PWM整流器MPDPC的鲁棒性分析[J]. 电测与仪表, 2017, 54(15): 23-27, 33.
LIU J L, LUO D R, ZHOU X Y.The robustness analysis of MPDPC for three-phase voltage sourced PWM rectifiers[J]. Electrical measurement & instrumentation, 2017, 54(15): 23-27, 33.
[14] 陶春阳. 基于直接功率控制的三相电压型PWM整流器研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
TAO C Y.The study of three-phase voltage source PWM rectifier base on direct power control[D]. Harbin: Harbin Institute of Technology, 2017.
[15] 谢程洲. 三相电压型PWM可逆变流器直接功率控制研究[D]. 南京: 东南大学, 2017.
XIE C Z.Direct power control of three-phase PWM reversible converter[D]. Nanjing: Southeast University, 2017.
[16] 王君瑞, 张梦月, 张晋宁, 等. 不平衡电网下PWM整流器反推直接功率控制[J]. 太阳能学报, 2017, 38(11): 2998-3004.
WANG J R, ZHANG M Y, ZHANG J N, et al.Backstepping-based direct power control for PWM rectifier under unbalanced grid voltage conditions[J]. Acta energiae solaris sinica, 2017, 38(11): 2998-3004.
[17] DANG C L, TONG X Q, SONG W Z.Discrete sliding mode control strategy for a three-phase Boost-type VIENNA rectifier with the CB-PWM[J]. IEEE transactions on electrical and electronic engineering, 2020, 15(4): 607-615.
[18] 钟诚, 程婷婷, 王建. 电流型PWM整流器自适应陷波器有源阻尼控制策略[J]. 电气传动, 2019, 49(12): 33-37.
ZHONG C, CHENG T T, WANG J.An adaptive notch filter active damping control strategy for current-source PWM rectifier[J]. Electric drive, 2019, 49(12): 33-37.
[19] 李翔宇, 赵志诚, 王文逾. 基于反向解耦的电压型PWM整流器内模控制[J]. 控制工程, 2019, 26(10): 1905-1910.
LI X Y, ZHAO Z C, WANG W Y.Internal model control of voltage type PWM rectifier based on reverse decoupling[J]. Control Engineering of China, 2019, 26(10): 1905-1910.
[20] 刘碧, 冯晓云, 邓睿, 等. 基于模型参考自适应的单相脉冲整流器无网压传感器控制方法[J]. 中国电机工程学报, 2019, 39(20): 6065-6074, 6187.
LIU B, FENG X Y, DENG R, et al.Grid voltage sensorless control strategy of single-phase PWM rectifiers with model reference adaptive system[J]. Proceedings of the CSEE, 2019, 39(20): 6065-6074, 6187.
PDF(5849 KB)

Accesses

Citation

Detail

Sections
Recommended

/