STUDY ON MUTI-PARAMETER MODEL OF WIND TURBINE BLADE ICING DETECTION AND WARNING

Liu Qingchao, Guo Peng, Zhang Wei, Zhang Yinlong, Zhang Yongming

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (2) : 402-407.

PDF(2226 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2226 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (2) : 402-407. DOI: 10.19912/j.0254-0096.tynxb.2020-0292

STUDY ON MUTI-PARAMETER MODEL OF WIND TURBINE BLADE ICING DETECTION AND WARNING

  • Liu Qingchao1, Guo Peng2, Zhang Wei1, Zhang Yinlong1, Zhang Yongming1
Author information +
History +

Abstract

This paper detailed analyzes the influences of the ice accretion on wind turbine performance and parameters. Output power, rotor speed and ambient temperature are selected as monitoring variables for blade ice accretion. Models are constructed using Gaussian Process Regression (GPR) to timely monitor output power and rotor speed parameters. Sequential Probability Ratio Test (SPRT) is introduced to analyze the predicting residual in order to detect the output power and rotor speed abnormalities. If three conditions including power abnormality, rotor speed abnormality, and ambient temperature near zero Celsius degree occur coincidence, blade icing alarm is triggered. The effectiveness of the proposed method is verified by taking the actual data of blade icing in a plateau wind farm in Yunnan as an example.

Key words

wind turbines / blades / condition monitoring / icing / multi-parameter model

Cite this article

Download Citations
Liu Qingchao, Guo Peng, Zhang Wei, Zhang Yinlong, Zhang Yongming. STUDY ON MUTI-PARAMETER MODEL OF WIND TURBINE BLADE ICING DETECTION AND WARNING[J]. Acta Energiae Solaris Sinica. 2022, 43(2): 402-407 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0292

References

[1] 李宁波, 闫涛, 李乃鹏, 等. 基于SCADA数据的风机叶片结冰检测方法[J]. 发电技术, 2018, 39(1): 58-62.
LI N B, YAN T, LI N P.Ice detection method by using SCADA data on wind turbine blades[J]. Power generating technology, 2018, 39(1): 58-62.
[2] 舒立春, 任晓凯, 胡琴, 等. 环境参数对小型风力发电机叶片覆冰特性及输出功率的影响[J]. 中国电机工程学报, 2016, 36(21): 5873-5878.
SHU L C, REN X K, HU Q, et al.Influences of environmental parameters on icing characteristics and output power on small wind turbine[J]. Proceedings of CSEE, 2016, 36(21): 5873-5878.
[3] 李大中, 王超, 李颍宁. 基于XGBoost算法的风机叶片结冰状态监测[J]. 电力科学与工程, 2019, 35(9): 43-48.
LI D Z, WANG C, LI Y N.Evaluation of fan icing based on XGBoost algorithm[J]. Electric power science and engineering, 2019, 35(9): 43-48.
[4] 龚妙, 李录平, 刘瑞, 等. 基于运行参数特征的风力机叶片覆冰诊断方法[J]. 动力工程学报, 2019, 39(3): 214-219.
GONG M, LI L P, LIU R, et al.Diagnosis of ice accretion on wind turbine blades based on the features of operating data[J]. Journal of Chinese Society of Power Engineering, 2019, 39(3): 214-219.
[5] MUÑOZCQG, GARCIA M ÁRQUEZ FPG, TOMÁS J M S. Ice detection using thermal infrared radiometry on wind turbine blades[J]. Measurement, 2016, 93: 157-163.
[6] SHOJA S, BERBYUK V, BOSTROM A.Guided wave-based approach for ice detection on wind turbine blades[J]. Wind engineering, 2018, 42(5): 483-495.
[7] CHEN N, QIAN Z, NABNEY I T, et al.Wind power forecasts using Gaussian processes and numerical weather prediction[J]. IEEE transactions on power systems, 2014, 29(2): 656-665.
[8] BAI C Z, GUPTA V.An on-line sensor selection algorithm for SPRT with multiple sensors[J]. IEEE transactions on automatic control, 2017, 62(7): 3532-3539.
PDF(2226 KB)

Accesses

Citation

Detail

Sections
Recommended

/