PERFORMANCE OF FLAP-TYPE WAVE ENERGY CONVERTER IN IRREGULAR WAVES

Fan Houpeng, Sun Liang, Han Songlin, Huang Jianzhao

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (2) : 82-87.

PDF(1773 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1773 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (2) : 82-87. DOI: 10.19912/j.0254-0096.tynxb.2020-0335

PERFORMANCE OF FLAP-TYPE WAVE ENERGY CONVERTER IN IRREGULAR WAVES

  • Fan Houpeng1, Sun Liang1, Han Songlin2, Huang Jianzhao1
Author information +
History +

Abstract

The instantaneous power and average power of the flap-type wave energy converter in irregular waves were calculated in MATLAB/Simulink to solve the Cummins equation. The effects of linear and nonlinear power intake systems were considered in analysis. The comparison between the numerical results under the linear assumption and the experimental data verifies the accuracy of the present numerical model. The influence of different hydraulic parameters on the electrical generation was studied using flap-hydraulic model. It can be concluded that there is optimum value of piston area to achieve maximum electrical power in specified wave condition.

Key words

wave energy / numerical models / nonlinear systems / flap-type / instantaneous power / average power

Cite this article

Download Citations
Fan Houpeng, Sun Liang, Han Songlin, Huang Jianzhao. PERFORMANCE OF FLAP-TYPE WAVE ENERGY CONVERTER IN IRREGULAR WAVES[J]. Acta Energiae Solaris Sinica. 2022, 43(2): 82-87 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0335

References

[1] 张中华, 夏增艳, 黄勇, 等. 离岸摆式波浪能发电技术综述[J]. 太阳能学报, 2012, 33(S1): 152-155.
ZHANG Z H, XIA Z Y, HUANG Y, et al.Overview of offshore surging wave energy power generation technologies[J]. Acta energiae solaris sinica, 2012, 33(S1): 152-155.
[2] 张亚群, 于龙飞, 盛松伟, 等. 液压式波浪能装置能量转换系统研究[J]. 太阳能学报, 2014, 35(10): 2071-2076.
ZHANG Y Q, YU L F, SHENG S W, et al.Research of power take-off system of hydraulic wave energy converter[J]. Acta energiae solaris sinica, 2014, 35(10): 2071-2076.
[3] CUMMINS W E.The impulse response function and ship motions[J]. Schiffstechnik, 1962(9): 101-109.
[4] 李松剑, 潘卫明, 刘靖飙, 等. 浮力摆式波浪能发电装置时域研究[J]. 太阳能学报, 2017, 38(2): 543-550.
LI S J, PAN W M, LIU J B, et al.Time-domain research of buoyant pendulum wave energy generation converter[J]. Acta energiae solaris sinica, 2017, 38(2): 543-550.
[5] YU Y H, LI Y, HALLETT K, et al.Design and analysis for a floating oscillating surge wave energy converter[C]//Proceedings of the 33rd International Conference on Ocean, Offshore and Arctic Engineering,San Francisco,USA,2014.
[6] SUN L, EATOCK TAYLOR R, TAYLOR P H.Wave driven free surface motion in the gap between a tanker and an FLNG barge[J]. Applied ocean research, 2015, 51: 331-349.
[7] SO R, SIMMONS A,BREKKEN T, et al.Development of PTO-Sim: A power performance module for the open-source wave energy converter code WEC-Sim[C]//Proceedings of the 34th International Conference on Ocean, Offshore and Arctic Engineering, Newfoundland,Canada, 2015.
[8] VAN'T HOFF J. Hydrodynamic modelling of the oscillating wave surge converter[D]. Belfast: Queen's University Belfast, 2009.
PDF(1773 KB)

Accesses

Citation

Detail

Sections
Recommended

/