STUDY ON TYPICAL METEOROLOGICAL YEARS FOR BUILDING ENERGY CONSUMPTION SIMULATION IN XISHA AREA

Zhang Xiaojing, Gai Shibo, Xie Jingchao, Zhou Jinyue, Liu Jiaping

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (2) : 311-320.

PDF(1835 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1835 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (2) : 311-320. DOI: 10.19912/j.0254-0096.tynxb.2020-0369

STUDY ON TYPICAL METEOROLOGICAL YEARS FOR BUILDING ENERGY CONSUMPTION SIMULATION IN XISHA AREA

  • Zhang Xiaojing, Gai Shibo, Xie Jingchao, Zhou Jinyue, Liu Jiaping
Author information +
History +

Abstract

The typical meteorological year (TMY) provides essential meteorological data for building energy efficiency design. To generate TMY, dry bulb temperature, solar radiation, wind speed and dew point temperature data over 30-year period are generally required. However, the lack of the meteorological observation data in the islands and reefs of the South China Sea is a serious problem, especially solar radiation data is difficult to obtain. Considering this situation, this paper takes Xisha islands in South China Sea as an example and studies the generation method of TMY under the condition of no solar radiation data or dew point temperature. Based on the nearly 30-year (1985-2014) meteorological data provided by the China Meteorological Administration, TMY for Xisha islands is generated using sunshine hours instead of solar radiation in developed Sandia method, and dew point temperature calculated with dry bulb temperature, atmosphere pressure and relative temperature. The obtained TMY data is in good agreement with long-term measured data in terms of cumulative distribution function curve, and both root mean square error value and mean bias error calculated between these two dataset are small. This indicates that the proposed method is reliable and accurate. Therefore, when solar radiation data is missing, sunshine hours can be used as a replacement to determine TMY and subsequently generate the typical annual data of multiple parameters such as temperature, humidity and wind speed. The obtained TMY data can be used for design of passive solar building and application of active solar technology. According to the generated typical annual meteorological data, Xisha islands is characterized with high temperature, high humidity and strong wind throughout the year, which is consistent with the long-term measured data.

Key words

meteorological data / solar radiation / sunshine hours / dew point temperature / building energy consumption

Cite this article

Download Citations
Zhang Xiaojing, Gai Shibo, Xie Jingchao, Zhou Jinyue, Liu Jiaping. STUDY ON TYPICAL METEOROLOGICAL YEARS FOR BUILDING ENERGY CONSUMPTION SIMULATION IN XISHA AREA[J]. Acta Energiae Solaris Sinica. 2022, 43(2): 311-320 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0369

References

[1] 曹忠祥, 高国力. 我国陆海统筹发展的战略内涵、思路与对策[J]. 中国软科学, 2015(2): 1-12.
CAO Z X, GAO G L.The connotation of and policy recommendation for overall planning development of land and sea in China[J]. China soft science magazine, 2015(2):1-12.
[2] 崔亚平, 谢静超, 张晓静, 等. 中国海陆气候差异性及海域建筑气候区划现状[J]. 哈尔滨工业大学学报, 2018, 50(2): 191-198.
CUI Y P, XIE J C, ZHANG X J, et al.Sealand climate differences and ocean building climate partition situation in our country[J]. Journal of Harbin Institute of Technology, 2018, 50(2): 191-198.
[3] JGJ/T 346—2014, 建筑节能气象参数标准[S].
JGJ/T 346—2014, Standard for weather data of building energy efficiency[S].
[4] 霍旭杰, 杨柳. 中国被动式太阳能采暖设计气候资源潜能[J]. 太阳能学报, 2019, 40(11): 3141-3147.
HUO X J, YANG L.Climate resource potential of passive solar heating design in China[J]. Acta energiae solaris sinica, 2019, 40(11): 3141-3147.
[5] 王武, 季杰, 于志, 等. 一种主、被动结合的太阳能空气采暖模拟研究[J]. 太阳能学报, 2015, 36(6): 1331-1336.
WANG W, JI J, YU Z, et al.Simulation study on active and passive solar air heating[J]. Acta energiae solaris sinica, 2015, 36(6): 1331-1336.
[6] 杨婧, 刘艳峰, 陈耀文, 等. 用于被动太阳能采暖适用技术选择的气候分区研究[J]. 太阳能学报, 2021, 42(6): 236-244.
YANG J, LIU Y F, CHEN Y W, et al.Research of climate regions division for applicable passive solar heating technology selection[J]. Acta energiae solaris sinica, 2021, 42(6): 236-244.
[7] 李红莲, 杨柳, 刘大龙, 等. 建筑能耗模拟用典型气象年产生方法的研究[J]. 西安建筑科技大学学报(自然科学版), 2015, 47(2): 267-271.
LI H L, YANG L, LIU D L, et al.Research on the method of generate TMY for building energy consumption simulation[J]. Journal of Xi'an University of Architecture & Technology (natural science edition), 2015, 47(2): 267-271.
[8] HALL I J.Generation of typical meteorological years for 26 SOLMET stations[C]//Proceedings of the 1987 Annual Meeting of the American Section of the International Solar Energy Society, San Diego, CA, USA, 1978: 669-671.
[9] 杨柳, 李昌华, 刘加平. 典型气象年生成方法及原始气象数据质量分析[J]. 气象科技, 2006, 34(5): 596-599.
YANG L, LI C H, LIU J P.Generating method of typical meteorological years and quality analysis of raw meteorological data[J]. Meteorological science and technology, 2006, 34(5): 596-599.
[10] FINKELSTEIN J M, SCHAFER R E.Improved goodness of fit tests[J]. Biometrica, 1971, 58(3): 641-645.
[11] MARION W, URBAN K. User's manual for TMY2s —typical meteorological years[R]. New Mexico: National Renewable Energy Laboratory, Derived from the1961-1990 National Solar Radiation Data Base.
[12] PUSAT S, EKMEKC I, AKKOYUNLU M T.Generation of typical meteorological year for different climates of Turkey[J]. Renewable energy, 2015, 75: 144-151.
[13] CHAN A L S. Generation of typical meteorological years using genetic algorithm for different energy systems[J]. Renewable energy, 2016, 90: 1-13.
[14] LAM J C, HUI S C M, CHAN A L S. A statistical approach to the development of a typical meteorological year for Hong Kong[J]. Architectural science review, 1996, 39(4): 201-209.
[15] ZANG H X, XU Q S, BIAN H H.Generation of typical solar radiation data for different climates of China[J]. Energy, 2012, 38(1): 236-248.
[16] ECEVIT A, AKINOGLU B G, AKSOY B.Generation of a typical meteorological year using sunshine duration data[J]. Energy, 2002, 27(10): 947-954.
[17] 李红莲, 杨柳, 侯立强, 等. 建筑能耗模拟用典型年气象参数的选取方法[J]. 太阳能学报, 2016, 37(9):2408-2414.
LI H L, YANG L, HOU L Q, et al.Selection method of meteorological parameters of TMY for building energy consumption simulation[J]. Acta energiae solaris sinica, 2016, 37(9): 2408-2414.
[18] ASHRAE. ASHRAE handbook of fundamentals[M]. Atlanta, GA: American Society of Heating, Refrigeration and Air-conditioning Engineers, 1997.
[19] 张晴原, 杨洪兴. 中国建筑用标准气象数据库[M]. 北京: 机械工业出版社, 2004.
ZHANG Q Y, HUANG H X.Standard meteorological database for building in China[M]. Beijing: China Machine Press, 2004.
[20] ZHANG Q Y, HUANG J, YANG H X, et al.Development of models to estimate solar radiation for Chinese locations[J]. Journal of Asian architecture and building engineering(JAABE), 2003, 2(2): 35-41.
[21] 赵荣义, 范存养, 薛殿华, 等. 空气调节[M]. 第4版. 北京: 中国建筑工业出版社, 2009.
ZHAO Y R, FAN C Y, XUE D H, et al.Air conditioning[M]. 4th ed. Beijing: China Architecture & Building Press, 2009.
[22] LIN H T, HUANG K T.The research, development and application of typical meteorological years of Taiwan[C]//The 2005 World Sustainable Building Conference Proceeding, Tokyo, Japan, 2005.
[23] 文小航. 中国大陆太阳辐射及其与气象要素关系的研究[D]. 兰州: 兰州大学, 2008.
WEN X H.Study on solar radiation and its relation with meteorological elements in mainland China[D]. Lanzhou: Lanzhou University, 2008.
[24] EBRAHIMPOUR A, MAEREFAT R.A method for generation of typical meteorological year[J]. Energy conversion & management, 2010, 51(3): 410-417.
[25] 武利璇, 谢静超, 张晓静, 等. 我国极端热湿气候区空调室外计算参数研究[C]//2020年工业建筑学术交流会论文集, 中国北京, 2020.
WU L X, XIE J C, ZHANG X J, et al.Research on air conditioning outdoor design parameters in extreme hot- humid region in China[C]// Proceedings of Industrial Construction Academic Conference, Beijing, China, 2020.
[26] 林宪德, 黄国仓. 台湾TMY2标准气象年之研究与应用[J]. 建筑学报, 2005(53): 79-94.
LIN H-T, HUANG K-T.The research and application of typical meteorological years of Taiwan[J]. Journal of architecture, 2005(53): 79-94.
PDF(1835 KB)

Accesses

Citation

Detail

Sections
Recommended

/