PHOTOVOLTAIC MODULE DEFECT IDENTIFICATION BASED ON MULIT-SCALE CONVOLUTION NEURAL NETWORK

Zhou Ying, Ye Hong, Wang Tong, Chang Mingxin

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (2) : 211-216.

PDF(2477 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2477 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (2) : 211-216. DOI: 10.19912/j.0254-0096.tynxb.2020-0408

PHOTOVOLTAIC MODULE DEFECT IDENTIFICATION BASED ON MULIT-SCALE CONVOLUTION NEURAL NETWORK

  • Zhou Ying1,2, Ye Hong1, Wang Tong1, Chang Mingxin1
Author information +
History +

Abstract

In order to improve the accuracy and efficiency of photovoltaic module defect classification, an Improved Multi-scale Convolutional Neural Network (IMCNN) model is proposed. According to the defect characteristics of photovoltaic module, the algorithm constructs the end-to-end Convolutional Neural Network model of three channels with different scales. At the same time, in order to optimize the network structure, SE-Inception modules are introduced in all three channels. Firstly, multi-channel convolution is used to extract features with different fineness. Then these features are fused to obtain the enhanced expression of high-level features. Finally, the defect classification of photovoltaic module is realized. Due to the small number of defective samples of photovoltaic module, a part of the image samples is generated using the Generative Adversarial Networks to effectively expanding the dataset. The results show that the Kappa coefficient of the proposed algorithm is higher, and the identification accuracy and efficiency are significantly improved.

Key words

photovoltaic modules / defect identification / picture processing / convolutional neural networks / generative adversarial networks

Cite this article

Download Citations
Zhou Ying, Ye Hong, Wang Tong, Chang Mingxin. PHOTOVOLTAIC MODULE DEFECT IDENTIFICATION BASED ON MULIT-SCALE CONVOLUTION NEURAL NETWORK[J]. Acta Energiae Solaris Sinica. 2022, 43(2): 211-216 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0408

References

[1] BROOKS W S M, LAMB D A, IRVINE S J C. IR reflectance imaging for crystalline Si solar cell crack detection[J]. IEEE journal of photovoltaics, 2015, 5(5): 1271-1275.
[2] 沈凯, 陈克, 杭丽君, 等. 一种可提升光伏系统在局部阴影时发电效率的阵列连接策略[J]. 太阳能学报, 2020, 41(4): 51-58.
SHEN K, CHEN K, HANG L J, et al.A arry strategy for efficiency improvement of photovoltaic systems under partially shaded condition[J]. Acta energiae solaris sinica, 2020, 41(4): 51-58.
[3] STROMER D, VETTER A, OEZKAN H C, et al.Enhanced crack segmentation(eCS): a reference algorithm for segmenting cracks in multicrystalline silicon solar cells[J]. IEEE journal of photovoltaic, 2019, 9(3): 752-758.
[4] JEN C Y, RICHTER C.Doping profile recognition applied to silicon photovoltaic cells using terahertz time-domain spectroscopy[J]. IEEE transactions on terahertz science and technology, 2014, 4(5): 560-567.
[5] SUN Q M, MELNIKOV A, MANDELIS A.Camera-based high frequency heterodyne lock-in carrierographic (frequency-domain photoluminescence)imaging of crystalline silicon wafers[J]. Physica status solidi, 2016, 213(2): 405-411.
[6] 鲁伟明, 李省, 张付特, 等. 基于不同电压下的电致发光和红外成像的太阳能电池缺陷检测[J]. 发光学报, 2014, 35(12): 1511-1519.
LU W M, LI X, ZHANG F T, et al.Defect detection of solar cell based on electroluminescence and thermography imaging with different bias voltage[J]. Chinese journal of luminescence, 2014, 35(12): 1511-1519.
[7] DEMANT M, WELSCHEHOLD T, OSWALD M, et al.Microcracks in silicon wafers I: inline detection and implications of crack morphology on wafer strength[J]. IEEE journal of photovoltaics, 2016, 6(1): 126-135.
[8] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al.Generative adversarial networks[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems, MIT Press, NIPS, 2014.
[9] RADFORD A, METZ L, CHINTALA S.Unsupervised representation learning with deep convolutional generative adversarial networks[J/OL]. [2015-11-19].https://arxiv.org/abs/1511.06434.
[10] LI Y C, XIAO N F, OUYANG W L.Improved boundary equilibrium generative adversarial networks[J]. IEEE access, 2018, 6: 11342-11348.
[11] ARJOVSKY M, CHINTALA S, BOTTOU L.Wasserstein GAN[J/OL].[2017-12-06].https:// arxiv.org/abs/1701.07875.
[12] CHAWLA N V, BOWYER K W, HALL L O, et al.SMOTE: synthetic minority over-sampling technique[J]. Journal of artificial intelligence research, 2002, 16: 321-357.
[13] INOUE H.Data augmentation by pairing samples for images classification[J/OL]. [2018-04-11].https:// arxiv.org/abs/1801.02929.
[14] ZHANG H, CISSE M, DAUPHIN Y N, et al.Mixup: beyond empirical risk minimization[J/OL]. [2018-04-27].https://arxiv.org/abs/1710.09412.
[15] 姚明海, 李洁, 王宪保. 基于RPCA的太阳能电池片表面缺陷检测[J]. 计算机学报, 2013, 36(9): 1943-1952.
YAO M H, LI J, WANG X B.Solar cells surface defects detection using RPCA method[J]. Journal of computer science, 2013, 36(9): 1943-1952.
[16] AGHAMOHAMMADI A H, PRABUWONO A S, SAHRAN S, et al.Solar cell panel crack detection using particle swarm optimization algorithm[C]// 2011 International Conference on Pattern Analysis and Intelligence Robotics, Kuala Lumpur, Malaysia, 2011.
[17] TSAI D M, WU S C, CHIU W Y.Defect detection in solar modules using ICA basis images[J]. IEEE transactions on industrial informatics, 2013, 9(1): 122-131.
PDF(2477 KB)

Accesses

Citation

Detail

Sections
Recommended

/