ESTABLISHMENT AND EXPERIMENTAL VERITIFICATION OF TRANSIENT THERMAL MODEL OF SILICONE RUBBER PLATE

Wang Tingting, Yang Zhenglin, Yang Lin, Hao Yanpeng, Luo Bing, Li Licheng

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (5) : 200-205.

PDF(1738 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1738 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (5) : 200-205. DOI: 10.19912/j.0254-0096.tynxb.2020-0433

ESTABLISHMENT AND EXPERIMENTAL VERITIFICATION OF TRANSIENT THERMAL MODEL OF SILICONE RUBBER PLATE

  • Wang Tingting1,2, Yang Zhenglin3, Yang Lin3, Hao Yanpeng3, Luo Bing1,2, Li Licheng3
Author information +
History +

Abstract

In order to study the surface temperature characteristics of photovoltaic backplane during partial discharge, establish a thermal circuit model of silicon rubber plate to realize the indirect calculation of discharge surface temperature. Firstly, establish a transient thermal circuit model of silicone rubber plate according to the characteristics of tracking of photovoltaic backplane. Considering the influence of air convection, introduce the air convection index n to modify the model. Propose the solution method of air convection index and convection heat transfer coefficient. Then exert current on a metal wire to simulate the heating state of the surface discharge of the silicone rubber plate. Design the temperature rise test of the silicone rubber plate and collect the surface temperature data and compare with the results calculated by thermal model. The relative error of the result of thermal circuit model is less than 10%, which has high accuracy.

Key words

PV backplane / creeping discharge / temperature / heat transfer / thermal circuit model / air convection index

Cite this article

Download Citations
Wang Tingting, Yang Zhenglin, Yang Lin, Hao Yanpeng, Luo Bing, Li Licheng. ESTABLISHMENT AND EXPERIMENTAL VERITIFICATION OF TRANSIENT THERMAL MODEL OF SILICONE RUBBER PLATE[J]. Acta Energiae Solaris Sinica. 2022, 43(5): 200-205 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0433

References

[1] 殷志强, 孟宪淦. 向太阳索取-中国太阳光-热与光-电应用现状与展望[J]. 太阳能学报, 2003, 24(5): 575-588. YIN Z Q, MENG X G. Harvesting the sun-the status and prospects of solar thermal conversion and photovoltaic application in China[J]. Acta energiae solaris sinica, 2003, 24(5): 575-588.
[2] 尹月琴, 张华健, 张展图, 等. 光伏背板用KPK绝缘封装材料局部放电特性研究[J]. 无线互联科技, 2020, 2(2): 146-147, 166. YIN Y Q, ZHANG H J, ZHANG Z T, et al. Study on partial discharge characteristics of KPK insulation encapsulation material for photovoltaic backplane[J]. Wireless internet technology, 2020, 2(2): 146-147, 166.
[3] 李亚钊, 宋浩峰, 苏媛媛. 光伏用PET薄膜力学性能测试结果的影响因素[J]. 信息记录材料, 2019, 20(5): 11-13. LI Y Z, SONG H F, SU Y Y. Influencing factors of mechanical properties test results of PET films for photovoltaic applications[J]. Information recording materials, 2019, 20(5): 11-13.
[4] 陈国清, 倪志春, 黄伟, 等. PCT加速老化对背板相对漏电起痕的影响研究[J]. 太阳能学报, 2018, 39(11): 3120-3123. CHEN G Q, NI Z C, HUANG W, et al. Study on effect of PCT accelerated aging on comparative tracking index of backsheet[J]. Acta energiae solaris sinica, 2018, 39(11): 3120-3123.
[5] 滕黎, 陈伟根, 孙才新. 油浸式电力变压器动态热路改进模型[J]. 电网技术, 2012, 36(4): 236-241. TENG L, CHEN W G, SUN C X. An improved dynamic thermal circuit model of oil-immersed power transformer[J]. Power system technology, 2012, 36(4): 236-241.
[6] SWIFT G, MOLINSKI T S, BRAY R, et al.A fundamental approach to transformer thermal modeling. II. field verification[J]. IEEE transactions on power delivery, 2001, 16(2): 176-180.
[7] 曾强, 肖继学, 廖旋, 等. 电缆热路模型特征参数基于LMS的实验分析方法研究[J]. 太阳能学报, 2017, 38(6): 1606-1611. ZENG Q, XIAO J X, LIAO X, et al. Experimental analysis method of characteristic parameters for cable thermal circuit model base on LMS[J]. Acta energiae solaris sinica, 2017, 38(6): 1606-1611.
[8] 胥玉萍, 肖继学, 董圣友, 等. 基于递推回归法的电缆热路模型特征参数实验分析方法[J]. 太阳能学报, 2016, 37(6): 1446-1452. XU Y P, XIAO J X, DONG S Y, et al. Experimental analysis method of characteristic parameters of cable thermal path model based on recursive regression method [J]. Acta energiae solaris sinica, 2016, 37(6): 1446-1452.
[9] 陈衡, 侯善敬. 电力设备故障红外诊断[M]. 北京: 中国电力出版社, 1999: 349-350. CHEN H, HOU S J. Infrared diagnosis of power equipment fault[M]. Beijing: China Electric Power Press, 1999: 349-350.
[10] 杨世铭, 陶文铨. 传热学[M]. 第4版. 北京: 高等教育出版社, 2006. YANG S M, TAO W Q. Heat Transfer[M]. 4th Ed.Beijing: Higher Education Press, 2006: 4-15.
[11] 薛杨. 导热绝缘硅橡胶复合材料的结构设计及性能研究[D]. 北京: 中国科学院大学, 2019. XUE Y. Study on structural-design and properties of electrical insulating silicone rubber composites with thermal conductivity[D]. Beijing: University of Chinese Academy of Sciences, 2019.
[12] SKOPEC A, MORON L, ZYLKA P.Time-domain temperature variations of a composite insulator surface exposed to arc discharges[J]. IEEE transactions on dielectrics & electrical insulation, 2004, 11(2): 369-377.
[13] SWIFT G, MOLINISK T S, LEHN W.A fundamental approach to transformer thermal modeling. I. Theory and equivalent circuit[J]. IEEE transactions on power delivery, 2002, 16(2): 171-175.
[14] MONTSINGER V M.Abridgment of loading transformers by temperature[J]. Journal of the A.I.E.E., 1930, 49(4): 293-297.
[15] 杜伯学, 徐航, 李云鹏, 等. 特高压直流用高导热纳米复合绝缘子耐电痕特性研究[J]. 高电压技术, 2013, 39(12): 2910-2915. DU B X, XU H, LI Y P, et al. Study on characteristics of tracking resistance of silicon rubber composite insulators with high thermal conductivity for UHVDC transmission lines[J]. High voltage engineering, 2013, 39(12): 2910-2915.
PDF(1738 KB)

Accesses

Citation

Detail

Sections
Recommended

/