OPTIMAL DISPATCHING OF ACTIVE DISTRIBUTION NETWORK BASED ON SUPPRESSING WIND AND PHOTOVOLTAIC POWER FLUCTUATION

Zhu Ziwei, Huang Biao, Qiu Xinyue, Huang Chunhui

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (5) : 90-97.

PDF(1647 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1647 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (5) : 90-97. DOI: 10.19912/j.0254-0096.tynxb.2020-0470

OPTIMAL DISPATCHING OF ACTIVE DISTRIBUTION NETWORK BASED ON SUPPRESSING WIND AND PHOTOVOLTAIC POWER FLUCTUATION

  • Zhu Ziwei, Huang Biao, Qiu Xinyue, Huang Chunhui
Author information +
History +

Abstract

Due to the fluctuating characteristics of wind power and photovoltaic(PV) output, grid-connected operation will affect the stability of active distribution network(ADN) operation. Combined with the energy storage system, wind power with large power fluctuations and photovoltaic power with intermittent characteristic in the active distribution network are built into a wind-solar-storage combined power generation system. By changing the marginal benefit of the flexible load to enhance its willingness to participate in the dispatch, the ability of the active distribution network to consume distributed renewable energy and the stability of the operation are improved. To improve the convergence of the particle swarm algorithm, the learning factor is dynamically adjusted by using fuzzy inference rules. Based on the IEEE 30-node simulation example, the fuzzy adaptive particle swarm algorithm is used to find the best performance with the objective of comprehensive economy of system daily operation. The simulation and analysis of the algorithm validate the validity of the model in this paper.

Key words

ADN / co-generation system / power fluctuation / flexible load / energy storage

Cite this article

Download Citations
Zhu Ziwei, Huang Biao, Qiu Xinyue, Huang Chunhui. OPTIMAL DISPATCHING OF ACTIVE DISTRIBUTION NETWORK BASED ON SUPPRESSING WIND AND PHOTOVOLTAIC POWER FLUCTUATION[J]. Acta Energiae Solaris Sinica. 2022, 43(5): 90-97 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0470

References

[1] 倪琳娜, 罗吉, 王少荣. 含风电电力系统的频率控制[J]. 电工技术学报, 2011, 26(S1): 235-241.
NI L N, LUO J, WANG S R.Frequency control of power system with wind power integration[J]. Transactions of China Electrotechnical Society, 2011, 26(S1): 235-241.
[2] 蔡国伟, 孔令国, 杨德友, 等. 大规模风光互补发电系统建模与运行特性研究[J]. 电网技术, 2012, 36(1): 65-71.
CAI G W, KONG L G, YANG D Y, et al.Research on modelling and operation characteristics analysis of large-scale wind & light complementary electricity-generating system[J]. Power system technology, 2012, 36(1): 65-71.
[3] 陈炯聪, 宋旭东, 余南华. 主动配电网及其关键技术研究[J]. 广东电力, 2014, 27(10): 79-83, 94.
CHEN J C, SONG X D, YU N H.Re-search on active power distribution network and key technology[J]. Guangdong electric power, 2014, 27(10):79-83, 94.
[4] 徐承刘, 殷婷婷, 王飞, 等. 基于帝国竞争算法的主动配电网优化调度[J]. 智慧电力, 2018, 46(7): 19-22, 41.
XU C L, YIN T T, WANG F, et al.Opti-mized dispatching of active distribution network based on imperial competition algorithm[J]. Smart power, 2018, 46(7): 19-22, 41.
[5] 赵巧娥, 郭敏, 贾新春, 等. 基于预测控制储能系统平抑风电场并网波动功率[J]. 电测与仪表, 2019, 56(5): 94-100.
ZHAO Q E, GUO M, JIA X C, et al.Suppression of grid-connected power fluctuation in wind farm based on the prediction of energy storage system[J]. Electrical measurement & instrumentation, 2019, 56(5):94-100.
[6] 邱晓燕, 沙熠, 宁雪姣, 等. 大规模风电接入的智能电网多类型柔性负荷分级优化调度[J]. 高电压技术, 2016, 42(7): 2084-2091.
QIU X Y, SHA Y, NING X J, et al.Hierarchical optimization of multi-type flexible load in smart grid with large-scale wind generation[J]. High voltage engineering, 2016, 42(7): 2084-2091.
[7] 南思博, 李庚银, 周明, 等. 智能小区可削减柔性负荷实时需求响应策略[J].电力系统保护与控制, 2019, 47(10): 42-50.
NAN S B, LI G Y, ZHOU M, et al.Real-time demand response of curtailable flexible load in smart residential community[J]. Power system protection and control, 2019, 47(10): 42-50.
[8] 戚永志, 刘玉田. 风光储联合系统输出功率滚动优化与实时控制[J]. 电工技术学报, 2014, 29(8): 265-273.
QI Y Z, LIU Y T.Output power rolling optimization and real-time control in wind-photovoltaic-storage hybrid system[J]. Transactions of China Electrotechnical Society, 2014, 29(8): 265-273.
[9] 蔡国伟, 孔令国, 潘超, 等. 风光储联合发电系统的建模及并网控制策略[J]. 电工技术学报, 2013, 28(9): 196-204.
CAI G W, KONG L G, PAN C, et al.System modeling of wind-PV-ES hybrid power system and its control strategy for grid-connected[J]. Transactions of China Electrotechnical Society, 2013, 28(9): 196-204.
[10] 刘娇娇, 王致杰, 袁建华, 等. 基于PSO算法的风光储微电网优化调度研究[J]. 华东电力, 2014, 42(8): 1534-1539.
LIU J J, WANG Z J, YUAN J H, et al.Optimized dispatch of wind-PV-battery microgrid based on PSO algorithm[J]. East China electric power, 2014, 42(8): 1534-1539.
[11] 于东霞, 张建华, 王晓燕, 等. 并网型风光储互补发电系统容量优化配置[J]. 电力系统及其自动化学报, 2019, 31(10): 59-65.
YU D X, ZHANG J H, WANG X Y, et al.Optimization of system capacity in grid-connected wind/PV/storage hybrid system[J]. Proceedings of the CSU-EPSA, 2019, 31(10): 59-65.
[12] 李东东, 徐连连, 刘翔, 等. 考虑可削减负荷参与的含风光储微网经济优化调度[J]. 电力系统保护与控制, 2017, 45(2): 35-41.
LI D D, XU L L, LIU X, et al.Optimal dispatching of microgrid considering the participation of reducible loads, distributed generators (DG) and energy storage units[J]. Power system protection and control, 2017, 45(2): 35-41.
[13] 张明理, 王璐, 徐建源, 等. 风光储联合发电系统复合控制策略研究[J]. 高压电器, 2018, 54(1): 64-72.
ZHANG M L, WANG L, XU J Y, et al.Research on compound control strategy of wind-PV-storage hybrid power generation system[J]. High voltage apparatus, 2018, 54(1): 64-72.
[14] 赵珊, 张纪会, 朱玉菲. 基于模糊推理的带收缩因子的粒子群算法[J]. 青岛大学学报(工程技术版), 2018, 33(3): 9-14, 37.
ZHAO S, ZHANG J H, ZHU Y Y.An adaptive constriction factor particle swarm optimization algorithm using fuzzy inference engine[J]. Journal of Qingdao University(engineering & technology edition), 2018, 33(3): 9-14, 37.
[15] 王皓怀, 汤涌, 侯俊贤, 等. 潮流计算和机电暂态仿真中风光储联合发电系统的实用等值方法[J]. 中国电机工程学报, 2012, 32(1): 1-8, 25.
WANG H H, TANG Y, HOU J X, et al.Equivalent method of integrated power generation system of wind, photovoltaic and energy storage in power flow calculation and transient simulation[J]. Proceedings of the CSEE, 2012, 32(1): 1-8, 25.
[16] 侯佑华, 房大中, 齐军, 等. 大规模风电入网的有功功率波动特性分析及发电计划仿真[J]. 电网技术, 2010, 34(5): 60-66.
HOU Y H, FANG D Z, QI J, et al.Analysis on active power fluctuation characteristics of large-scale grid-connected wind farm and generation scheduling simulation under different capacity power injected from wind farms into power grid[J]. Power system technology, 2010, 34(5): 60-66.
[17] 吕朋蓬, 赵晋泉, 李端超, 等. 基于信息物理系统的孤岛微网实时调度的一致性协同算法[J]. 中国电机工程学报, 2016, 36(6): 1471-1480.
LYU P P, ZHAO J Q, LI D C, et al.A consensus-based collaborative algorithm for real time dispatch of island microgrid in cyber physical system[J]. Proceedings of the CSEE, 2016, 36(6): 1471-1480.
[18] 徐熙林, 宋依群, 姚良忠, 等. 主动配电网源-荷-储分布式协调优化运行(一): 基于一致性理论的分布式协调控制系统建模[J]. 中国电机工程学报, 2018, 38(10): 2841-2848, 3135.
XU X L, SONG Y Q, YAO L Z, et al.Source-load-storage distributed coordinative optimization of AND part one: consensus based distributed coordination system modeling[J]. Proceedings of the CSEE, 2018, 38(10): 2841-2848, 3135.
PDF(1647 KB)

Accesses

Citation

Detail

Sections
Recommended

/