STUDY ON ROUGHNESS SENSITIVITY OF WIND TURBINE AIRFOILS AFFECTED BY TRAILING-EDGE THICKNESS

Huang Chenwu, Wang Taoping

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (2) : 486-491.

PDF(1586 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1586 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (2) : 486-491. DOI: 10.19912/j.0254-0096.tynxb.2020-0482

STUDY ON ROUGHNESS SENSITIVITY OF WIND TURBINE AIRFOILS AFFECTED BY TRAILING-EDGE THICKNESS

  • Huang Chenwu, Wang Taoping
Author information +
History +

Abstract

The surface roughness of wind turbine blade caused by pollution, especially the surface roughness of leading edge, is an important factor of power loss. In this paper, the effect of trailing edge thickness on roughness sensitivity of DU93-W-210, DU91-W2-250 and DU97-W-300 airfoils after trailing edge modification is studied by using vortex panel method and RANS method. To simulate the leading edge contamination of airfoil, the fixed transition is set in the vortex panel method. And the serrated boundary condition is set in RANS method. It is found that the leading edge pollution causes the decrease of the suction peak, and induces the reduction of the airfoil aerodynamic performance. However, with the appropriate increase of the trailing edge thickness, the decline rates of the maximum lift drag ratio and the design lift coefficient (i.e. aerodynamic performance) show a decreasing trend. It indicates that the roughness sensitivity of wind turbine blade can be effectively reduced by increasing the trailing edge thickness.

Key words

wind turbines / blade / flow simulation / roughness sensitivity / trailing-edge thickness

Cite this article

Download Citations
Huang Chenwu, Wang Taoping. STUDY ON ROUGHNESS SENSITIVITY OF WIND TURBINE AIRFOILS AFFECTED BY TRAILING-EDGE THICKNESS[J]. Acta Energiae Solaris Sinica. 2022, 43(2): 486-491 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0482

References

[1] MOLLY J P.Wind energy—Theory, application, measuring[M]. Karlsrube: Verlag C F M, 1996.
[2] CORTEN G P, VELDKAMP H F.Insects can halve wind-turbine power[J]. Nature, 2001, 412: 42-43.
[3] KHALFALLAHA M G, KOLIUB A M.Effect of dust on the performance of wind turbines[J]. Desalination, 2007, 209: 209-220.
[4] DALILI N, EDRISY A, CARRIVEAU R.A review of surface engineering issues critical to wind turbine performance[J]. Renewable and sustainable energy reviews, 2009, 13: 428-438.
[5] TANGLER J L, SOMERS D M.NREL airfoil families for HAWTs[R]. NREL/TP-442-7109, 1995.
[6] FUGLSANG P, BAK C, GAUNAA M, et al.Design and verification of the Risø-B1 airfoil family for wind turbines[J]. Transactions of the ASME, 2004, 126: 1002-1010.
[7] STANDISH K J, VAN DAM C P. Aerodynamic analysis of blunt t railing edge airfoils[J]. Journal of solar energy engineering, 2003, 125: 479-487.
[8] BAKER J P, MAYDA E A, VAN DAM C P. Experimental analysis of thick blunt trailing-edge wind turbine airfoils[J]. Transactions of the ASME, 2006, 128: 422-431.
[9] VAN DAM C P, COOPERMAN A, MCLENNAN A, et al. Thick airfoils with blunt trailing edge for wind turbine blades[C]//ASME Turbo Expo 2010: Power for Land, Sea,and Air, Glasgow, UK, 2010.
[10] VAN ROOIJ R P J O M. Modification of the boundary layer calculation in RFOIL for improved airfoil stall prediction[R].IW-96087R, 1996.
[11] TIMMER W A, VAN ROOIJ R.Summary of the Delft university wind turbine dedicated airfoils[J]. Journal of solar energy eng ineering, 2003, 125(4): 488-496.
[12] 张磊, 杨科, 赵晓路, 等. 不同尾缘改型方式对风力机钝尾缘翼型气动性能的影响[J]. 工程热物理学报, 2009, 30(5): 773-776.
ZHANG L, YANG K, ZHAO X L, et al.Aerodynamic influence of different trailing-edge changing methods on blunt trailing-edge airfoils[J]. Journal of engineering thermophysics, 2009, 30(5): 773-776.
[13] BJÖRK A. Coordinates and calculations for the FFA-W1-xxx, FFA-W2-xxx, FFA-W3-xxx series of airfoils for HAWTS[R].FFATN1990-15, 1990.
[14] 焦灵燕, 汪建文, 贺玲丽. 粗糙度对风力机翼型气动性能影响的模拟研究[J]. 可再生能源, 2014, 32(12): 1816-1820.
JIAO L Y, WANG J W, HE L L.Simulation study on effect of surface roughness on aerodynamic performance of wind turbine airfoil[J]. Renewable energy resources, 2014, 32(12): 1816-1820.
[15] DRELA M.XFOIL: An analysis and design system for low Reynolds number airfoils[C]//Conference on Low Reynolds Number Airfoil Aerodynamics, University of Notre Dame, South Bend, 1989: 1-12.
[16] 吴聪, 袁奇, 钟贤和. 风力机叶片表面粗糙度效应的三维数值研究[J]. 太阳能学报, 2014, 35(5): 848-854.
WU C, YUAN Q, ZHONG X H.3D numerical simulation on the effect of surface roughness on wind turbine blades[J]. Acta energiae solaris sinica, 2014, 35(5): 848-854.
[17] 张骏, 袁奇, 吴聪, 等. 大型风力机叶片表面粗糙度效应数值研究[J]. 中国机电工程学报, 2014, 34(20): 3884-3391.
ZHANG J, YUAN Q, WU C, et al.Numerical simulation on the effect of surface roughness for large wind turbine blades[J]. Proceedings of the CSEE, 2014, 34(20): 3884-3391.
[18] CLAESSENS M C.The design and testing of airfoils for application in small vertical axis wind turbines[D]. Delft: Delft University of Technology, 2006.
[19] ELENI D C, ATHANASIOS T I, DIONISSIOS M P.Evaluation of the turbulence models for the simulation of the flow over a National Advisory Committee for Aeronautic (NACA) 0012 airfoil[J]. Journal of mechanical engineering research, 2012, 4(3): 100-111.
[20] LIAN Y S, SHYY W.Laminar-turbulent transition of a low Reynolds number rigid or flexible airfoil[J]. AIAA journal, 2007, 45(7): 1501-1513.
[21] HUANG C W, YANG K, LIU Q, et al.A study on performance influences of airfoil aerodynamic parameters and evaluation indicators for the roughness sensitivity on wind turbine blade[J]. Science China technological sciences, 2011, 54(11): 2993-2998.
[22] 黄宸武, 杨科, 刘强, 等. 风力机叶片21%相对厚度翼型粗糙敏感性研究[J]. 工程热物理学报, 2012, 33(6): 953-956.
HUANG C W, YANG K, LIU Q, et al.Investigation on roughness sensitivity for 21% relative thickness airfoil of wind turbine blade[J]. Journal of engineering thermophysics, 2012, 33(6): 953-956.
PDF(1586 KB)

Accesses

Citation

Detail

Sections
Recommended

/