FAULT DIAGNOSIS OF ROLLING BEARINGS BASED ON ATTENTION MODULE AND 1D-CNN

Liu Yang, Cheng Qiang, Shi Yaowei, Wang Yuwei, Wang Shan, Deng Aidong

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (3) : 462-468.

PDF(2009 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2009 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (3) : 462-468. DOI: 10.19912/j.0254-0096.tynxb.2020-0495

FAULT DIAGNOSIS OF ROLLING BEARINGS BASED ON ATTENTION MODULE AND 1D-CNN

  • Liu Yang1, Cheng Qiang1, Shi Yaowei1, Wang Yuwei2, Wang Shan3, Deng Aidong1
Author information +
History +

Abstract

Aiming at the problem of poor feature recognition ability of traditional convolutional neural network(CNN), this paper proposes a rolling bearings fault diagnosis model combining the attention module and the one-dimensional convolutional neural network (1D-CNN). Firstly, the noise-added vibration signals are used as the input of the proposed model, and their multi-dimensional features are extracted by using the “convolution + pooling” unit. Then, the attention module assigns different weights to the extracted features. The double pooling layer is adopted to replace the fully connected layer in the traditional CNN for feature extraction and information integration. Finally, a Softmax layer is used to achieve bearing status classification. Experimental results show that the diagnostic accuracy of the model proposed in this paper reaches 99%. Compared with the traditional models, the proposed model has higher diagnostic accuracy, faster convergence speed, a more stable training process, and better generalization performance under variable load.

Key words

wind turbines / rolling bearing / fault diagnosis / convolutional neural network / attention mechanism / feature extraction

Cite this article

Download Citations
Liu Yang, Cheng Qiang, Shi Yaowei, Wang Yuwei, Wang Shan, Deng Aidong. FAULT DIAGNOSIS OF ROLLING BEARINGS BASED ON ATTENTION MODULE AND 1D-CNN[J]. Acta Energiae Solaris Sinica. 2022, 43(3): 462-468 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0495

References

[1] 冯辅周, 司爱威, 饶国强, 等. 基于小波相关排列熵的轴承早期故障诊断技术[J]. 机械工程学报, 2012, 48(13): 73-79.
FENG F Z, SI A W, RAO G Q, et al.Early fault diagnosis technology for bearing based on wavelet correlation permutation entropy[J]. Journal of mechanical engineering, 2012, 48(13): 73-79.
[2] 杨宇, 于德介, 程军圣. 基于EMD与神经网络的滚动轴承故障诊断方法[J]. 振动与冲击, 2005, 24(1): 85-88.
YANG Y, YU D J, CHENG J S.Rolling bearing fault diagnosis method based on neural network[J]. Journal of vibration and shock, 2005, 24(1): 85-88.
[3] 何沿江, 齐明侠, 罗红梅. 基于ICA和SVM的滚动轴承声发射故障诊断技术[J]. 振动与冲击, 2008(3): 150-153, 186-187.
HE Y J, QI M X, LUO H M. Ae based fault diagnosis of rolling bearings by use of ICA and SVM[J]. Journal of vibration and shock, 2008(3): 150-153, 186-187.
[4] 张淑清, 胡永涛, 姜安琦, 等. 基于双树复小波和深度信念网络的轴承故障诊断[J]. 中国机械工程, 2017, 28(5): 532-536, 543.
ZHANG S Q, HU Y T, JIANG A Q, et al.Bearing fault diagnosis based on DTCWT and DBN[J]. China mechanical engineering, 2017, 28(5): 532-536, 543.
[5] 曲建岭, 余路, 袁涛, 等. 基于一维卷积神经网络的滚动轴承自适应故障诊断算法[J]. 仪器仪表学报, 2018, 39(7): 134-143.
QU J L, YU L, YUAN T, et al.Adaptive fault diagnosis algorithm for rolling bearings based on one-dimensional convolutional neural network[J]. Chinese journal of scientific instrument, 2018, 39(7): 134-143.
[6] 顾鑫, 唐向红, 陆见光, 等. 基于1-DCNN-LSTM的滚动轴承自适应故障诊断方法研究(英文)[J]. 机床与液压, 2020, 48(6): 107-113.
GU X, TANG X H, LU J G, et al.Adaptive fault diagnosis method for rolling bearings based on 1-DCNN-LSTM[J]. Machine tool and hydraulics, 2020, 48(6): 107-113.
[7] 卢宏涛, 张秦川. 深度卷积神经网络在计算机视觉中的应用研究综述[J]. 数据采集与处理, 2016, 31(1): 1-17.
LU H T, ZHANG Q C.Applications of deep convolutional neural network in computer vision[J]. Journal of data acquisition and processing, 2016, 31(1): 1-17.
[8] ABDELHAMID O, MOHAMMED A, JIANG H, et al.Convolutional neural networks for speech recognition[J]. IEEE/ACM transactions on audio, speech and language processing, 2014, 22(10): 1533-1545.
[9] 徐戈, 王厚峰. 自然语言处理中主题模型的发展[J]. 计算机学报, 2011, 34(8): 1423-1436.
XU G, WANG H F.The development of topic models in natural language processing[J]. Chinese journal of computers, 2011, 34(8): 1423-1436.
[10] DONAHUE J, JIA Y, VINYALS O, et al.DeCAF: a deep convolutional activation feature for generic visual recognition[J]. Computer science, 2013, 50(1): 815-830.
[11] 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251.
ZHOU F Y, JIN L P, DONG J.Review of convolutional neural network[J]. Chinese journal of computers, 2017, 40(6): 1229-1251.
[12] 曲之琳, 胡晓飞. 基于改进激活函数的卷积神经网络研究[J]. 计算机技术与发展, 2017, 27(12): 77-80.
QU Z L, HU X F.Research on convolutional neural network based on improved activation function[J]. Computer technology and development, 2017, 27(12): 77-80.
[13] 刘万军, 梁雪剑, 曲海成. 不同池化模型的卷积神经网络学习性能研究[J]. 中国图象图形学报, 2016, 21(9): 1178-1190.
LIU W J, LIANG X J, QU H C.Learning performance of convolutional neural networks with different pooling models[J]. Journal of image and graphics, 2016, 21(9): 1178-1190.
[14] 辛鹏, 许悦雷, 唐红, 等. 全卷积网络多层特征融合的飞机快速检测[J]. 光学学报, 2018, 38(3): 344-350.
XIN P, XU Y L, TANG H, et al.Fast airplane detection based on multi-layer feature fusion of fully convolutional networks[J]. Acta optica sinica, 2018, 38(3): 344-350.
[15] 杨丽, 吴雨茜, 王俊丽, 等. 循环神经网络研究综述[J]. 计算机应用, 2018, 38(S2): 1-6, 26.
YANG L, WU Y Q, WANG J L, et al.Research on recurrent neural network[J]. Journal of computer applications, 2018, 38(S2): 1-6, 26.
[16] 王鑫, 吴际, 刘超, 等. 基于LSTM循环神经网络的故障时间序列预测[J]. 北京航空航天大学学报, 2018, 44(4): 772-784.
WANG X, WU J, LIU C, et al.Exploring LSTM based recurrent neural network for failure time series prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 772-784.
[17] BAHDANAU D, CHO K, BENGIO Y.Neural machine translation by jointly learning to align and translate[EB/OL]. http://cn.arxiv.org/abs/1409.0473.
[18] HU J, SHEN L, SUN G, et al.Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Salt Lake City, USA, 2018.
[19] CHEN L, ZHANG H W, XIAO J, et al.SCA-CNN: spatial and channel-wise attention in convolutional networks for image captioning[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Hawaii, USA, 2017.
[20] ALMAHAIRI A, BALLAS N, COOIJMANS T, et al.Dynamic capacity networks[C]//International Conference on Machine Learning, New York, USA, 2016: 2549-2558.
[21] JADERBERG M, SIMONYAN K, ZISSERMAN A.Spatial transformer networks[C]//International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 2017-2025.
[22] WOO S, PARK J, LEE J, et al.CBAM: convolutional block attention module[C]//European Conference on Computer Vision, Munich, Germany, 2018: 3-19.
PDF(2009 KB)

Accesses

Citation

Detail

Sections
Recommended

/