SOLAR-DRIVEN AIR-COOLED ADIABATIC JET ABSORPTION REFRIGERATION CYCLE

Hou Zhaoning, Wang Lin, Yan Xiaona, Tan Yingying, Li Xiuzhen

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (3) : 268-273.

PDF(1595 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1595 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (3) : 268-273. DOI: 10.19912/j.0254-0096.tynxb.2020-0520

SOLAR-DRIVEN AIR-COOLED ADIABATIC JET ABSORPTION REFRIGERATION CYCLE

  • Hou Zhaoning1, Wang Lin1, Yan Xiaona2, Tan Yingying1, Li Xiuzhen1
Author information +
History +

Abstract

In order to improve the performance of solar absorption refrigeration cycle and solve the problems of solar powered air-cooled absorption chiller, solar-driven air-cooled adiabatic jet absorption refrigeration cycle (AAJA) is proposed in this paper. The jet-adiabatic absorber not only separates the processes of heat and mass transfer, but also recovers the lost work due to throttling process of high-pressure solution and excessive pressure of recirculation solution, which leads to the improvement of absorption efficiency. The mathematical model of thermodynamics of components is established, and the influences of ambient temperature, generating temperature, evaporating temperature and ejector pressure lift ratio on the three cycles are discussed and compared. The results show that, there is an optimal generating temperature for the proposed cycle to obtain the highest thermal coefficient of performance ($COP_T$), and the jet-adiabatic absorber can significantly improve cycle performance under the extreme operating conditions. As compared with the conventional air-cooled adiabatic absorption refrigeration (AAAR) cycle, the $COP_T$ and electric coefficient of performance ($COP_E$) of the proposed cycle are increased by 7.69% and 43.59% respectively, whereas the $COP_T$ and $COP_E$ of the novel cycle are 2.44% and 273.86%, respectively higher than those of the water-cooled non-adiabatic absorption ejector refrigeration (WNAE) cycle.

Key words

solar energy / absorption refrigeration / adiabatic absorber / ejector / air-cooled / coefficient of performance

Cite this article

Download Citations
Hou Zhaoning, Wang Lin, Yan Xiaona, Tan Yingying, Li Xiuzhen. SOLAR-DRIVEN AIR-COOLED ADIABATIC JET ABSORPTION REFRIGERATION CYCLE[J]. Acta Energiae Solaris Sinica. 2022, 43(3): 268-273 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0520

References

[1] 韩东, 阮建平, 梁林. 传热传质分离式太阳能吸收式制冷机实验研究[J]. 太阳能学报, 2009, 30(9): 1168-1172.
HAN D, YUAN J P, LIANG L.Experiment study on solar powered lithium bromide absorption chiller with and mass separated[J]. Acta energiae solaris sinica, 2009, 30(9): 1168-1172.
[2] RYAN W.Water absorption in an adiabatic spray of aqueous lithium bromide solution[D]. Chicago: Illinois Institute of Technology, 1995.
[3] WANG L, CHEN G M, WANG Q, et al.Thermodynamic performance analysis of gas-fired air-cooled adiabatic absorption refrigeration systems[J]. Applied thermal engineering, 2007, 27(8): 1642-1652.
[4] 陈光明, 何一坚, 章文斌. 溴化锂溶液空气预冷却绝热吸收过程研究[J]. 太阳能学报, 2002, 23(3): 344-348.
CHEN G M, HE Y J, ZHANG W B.Study on lithium-bromide aqueous solution air-precooled adiabatic absorption process[J]. Acta energiae solaris sinica, 2002, 23(3): 344-348.
[5] 王延觉, 欧汝浩, 陈焕新, 等. 溴化锂绝热、增压双效吸收式制冷循环[J]. 流体机械, 2007, 35(5): 75-78.
WANG Y J, OU R H, CHEN H X, et al.Boosting double effect absorption refrigeration circle using heat and mass transfer separation absorber[J]. Fluid machinery, 2007, 35(5): 75-78.
[6] 申江, 高文全, 孙欢, 等. 传热传质分离的绝热吸收过程实验研究[J]. 低温与超导, 2009, 37(9): 55-59.
SHEN J, GAO W Q, SUN H, et al.Experimental investigation on heat and mass transfer separation adiabatic absorption process[J]. Cryogenics & superconductivity, 2009, 37(9): 55-59.
[7] HONG D L, CHEN G M, TANG L M, et al.A novel ejector-absorption combined refrigeration cycle[J]. International journal of refrigeration, 2011, 34(7): 1596-1603.
[8] 石玉琦, 洪大良, 陈光明, 等. 一个带喷射器的两级吸收式制冷循环[J]. 太阳能学报, 2015, 36(3): 599-603.
SHI Y Q, HONG D L, CHEN G M, et al.A two-stage absorption refrigeration cycle with an ejector[J]. Acta energiae solaris sinica, 2015, 36(3): 599-603.
[9] SIRWAN R, ALGHOUL M A, SOPIAN K, et al.Evaluation of adding flash tank to solar combined ejector-absorption refrigeration cycle[J]. Solar energy, 2013, 91: 283-296.
[10] VEREDA C, VENTAS R, LECUONA A, et al.Single-effect absorption refrigeration cycle boosted with an ejector-adiabatic absorber using a single solution pump[J]. International journal of refrigeration, 2014, 38: 22-29.
[11] HUANG B J, CHANG J M, WANG C P, et al.A 1-D analysis of ejector performance[J]. International journal of refrigeration, 1999, 22(5): 354-364.
[12] WANG J F, DAI Y P, SUN Z X, et al.A theoretical study on a novel combined power and ejector refrigeration cycle[J]. International journal of refrigeration, 2009, 32(6): 1186-1194.
[13] KAITA Y.Thermodynamic properties of lithium bromide-water solutions at high temperatures[J]. International journal of refrigeration, 2001, 24(5): 374-390.
[14] MALHOTRA A, PANDA D M.Thermodynamic properties of superheated and supercritical steam[J]. Applied energy, 2001, 68(4): 387-396.
PDF(1595 KB)

Accesses

Citation

Detail

Sections
Recommended

/