SHORT-TERM FORECAST OF WIND POWER BASED ON BSO-ELM-ADABOOST WITH GREY CORRELATION ANALYSIS

Ye Jiahao, Wei Xia, Huang Deqi, Xie Lirong, Huang Chenchen, Zhao Shicheng

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (3) : 426-432.

PDF(1809 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1809 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (3) : 426-432. DOI: 10.19912/j.0254-0096.tynxb.2020-0524

SHORT-TERM FORECAST OF WIND POWER BASED ON BSO-ELM-ADABOOST WITH GREY CORRELATION ANALYSIS

  • Ye Jiahao1, Wei Xia1, Huang Deqi1, Xie Lirong1, Huang Chenchen1, Zhao Shicheng2
Author information +
History +

Abstract

A novel method of short-term wind power prediction based on grey relational analysis and beetle swarm optimization extreme learning machine is proposed in this paper. Firstly, the gray correlation analysis is used to construct a training sample set to improve the correlation between historical data and forecasting information on the daily time scale. Furthermore, the beetle swarm optimization algorithm is used to optimize the extreme learning machine and find the optimal weight threshold for the extreme learning machine to improve its generalization ability. Finally, the concept of integrated learning is introduced, and multiple weak predictors of extreme learning machines are combined through adaptive enhancement algorithm learning to correct the prediction errors to realize the self-allocation and reorganization of error weights. The strong predictor of the extreme learning machine formed further improves the prediction accuracy of the model and the effectiveness of the method is verified by the actual data of a wind farm in Northwest China.

Key words

wind power / power forecast / Adaptive Boosting / grey correlation analysis / beetle swarm algorithm / extreme learning machine

Cite this article

Download Citations
Ye Jiahao, Wei Xia, Huang Deqi, Xie Lirong, Huang Chenchen, Zhao Shicheng. SHORT-TERM FORECAST OF WIND POWER BASED ON BSO-ELM-ADABOOST WITH GREY CORRELATION ANALYSIS[J]. Acta Energiae Solaris Sinica. 2022, 43(3): 426-432 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0524

References

[1] 刘武周, 刘友波. 基于改进粒子群优化算法风力发电功率预测研究[J]. 可再生能源, 2017, 35(9): 1331-1335.
LIU W Z, LIU Y B.Research on wind power generation prediction based on improved particle, swarm, optimization, algorithm[J]. Renewable energy, 2017, 35(9): 1331-1335.
[2] LAHOUAR A, BEN H S J. Hour-ahead wind power forecast based on random forests[J]. Renewable energy, 2017, 109: 529-541.
[3] 杨秀媛. 改进K近邻算法在风功率预测及风水协同运行中的应用[J]. 电网技术, 2018, 42(3): 772-778.
YANG X Y.Wind power prediction based on improved K-nearest neighbor algorithm and its application in co-operation of wind and hydro powers[J]. Power grid technology, 2018, 42(3): 772-778.
[4] WAN C, XU Z.Probabilistic forecasting of wind power generation using extreme learning machine[J]. IEEE transactions on power systems, 2014, 29(3): 1033-1044.
[5] 刘颖明. 结合风功率预测及储能能量状态的模糊控制策略平滑风电出力[J]. 电网技术, 2019, 18(3): 1-11.
LIU Y M.A fuzzy control strategy combined with wind power prediction and energy storage soe for smoothing wind power output[J]. Power system technology, 2019, 18(3): 1-11.
[6] 刘红岩, 陈剑, 陈国青. 数据挖掘中的数据分类算法综述[J]. 清华大学学报(自然科学版), 2002, 42(6): 727-730.
LIU H Y, CHEN J, CHEN G Q.Review of classification algorithms for data mining[J]. Journal of Tsinghua University(science and technology), 2012, 42(6): 727-730.
[7] LIU G, YU W D.The BP neural network modeling on worsted spinning with grey superior theory and correlation analysis[C]//2008 Fourth International Conference on Natural Computation, Ji’nan, China, 2008, 3: 374-378.
[8] 武小梅, 林翔, 谢旭泉, 等. 基于VMD-PE和优化相关向量机的短期风电功率预测[J]. 太阳能学报, 2018, 39(11): 3277-3285.
WU X M, LIN X, XIE X Q, et al.Short-term wind power prediction based on VMD-PE and optimized correlation vector machine[J]. Acta energiae solaris sinica, 2018, 39(11): 3277-3285.
[9] 张晓英, 张晓敏, 廖顺, 等. 基于聚类与非参数核密度估计的风电功率预测误差分析[J]. 太阳能学报, 2019, 40(12): 3594-3604.
ZHANG X Y, ZHANG X M, LIAO S, et al.Error analysis of wind power prediction based on clustering and non-parametric kernel density estimation[J]. Acta energiae solaris sinica, 2019, 40(12): 3594-3604.
[10] 王爽心, 赵欣, 李涛, 等. 基于小世界优化的风电功率变权组合预测模型[J]. 太阳能学报, 2015, 36(12): 2867-2873.
WANG S X, ZHAO X, LI T, et al.Wind power variable weight combination forecasting model based on small world optimization[J]. Acta energiae solaris sinica, 2015, 36(12): 2867-2873.
[11] 彭晨宇, 陈宁, 高丙团. 结合多重聚类和分层聚类的超短期风电功率预测方法[J]. 电力系统自动化, 2020, 44(2): 173-181.
PENG C Y, CHEN N, GAO B T.Ultra-short-term wind power prediction method combining multiple clustering and hierarchical clustering[J]. Power system automation, 2020, 44(2): 173-181.
[12] 崔嘉. 基于改进CFD与小波混合神经网络组合的风电场功率预测方法[J]. 电网技术, 2017, 41(1): 79-85.
CUI J.New method of combined wind power forecasting based on improved CFD and wavelet-HNN model[J]. Power system technology, 2017, 41(1): 79-85.
[13] 刘思峰, 蔡华, 杨英杰, 等. 灰色关联分析模型研究进展[J]. 系统工程理论与实践, 2013, 33(8): 2041-2046.
LIU S F, CAI H, YANG Y J, et al.Research progress of gray relational analysis model[J]. System engineering theory and practice, 2013, 33(8): 2041-2046.
[14] WU Q, MA Z P, XU G, et al.A novel neural network classifier using beetle antennae search algorithm for pattern classification[J]. IEEE access, 2019, 7: 64686-64696.
[15] ZHU Z Y, ZHANG Z Y, MAN W S, et al.A new beetle antennae search algorithm for multi-objective energy management in microgrid[C]//2018 13th IEEE Conference on Industrial Electronics and Applications, Wuhan, China, 2018.
[16] ZHANG Z, YANG X.Bio-inspired motion planning for reaching movement of a manipulator based on intrinsic tau jerk guidance[J]. Advances in manufacturing, 2019(3): 315-325.
[17] 邹东尧, 陈鹏伟, 刘宽. 一种改进的RSSI测距定位算法[J]. 电讯技术, 2019, 59(10): 1191-1196.
ZOU D Y, CHEN P W, LIU K.An improved RSSI ranging and positioning algorithm[J]. Telecommunications technology, 2019, 59(10): 1191-1196.
[18] WANG T T, YANG L, LIU Q. Beetle swarm optimization algorithm: theory and application[J]. arXiv preprint arXiv:1808. 00206, 2018.
[19] 秦琼, 刘树洁, 赖旭, 等. GA优化ELM神经网络的风电场测风数据插补[J]. 太阳能学报, 2018, 39(8): 2125-2132.
QIN Q, LIU S J, LAI X, et al.Interpolation of wind measurement data for wind farms based on GA optimized ELM neural network[J]. Acta energiae solaris sinica, 2018, 39(8): 2125-2132.
[20] 张荣, 邓赵红, 王士同, 等. 针对小样本数据集的鲁棒单隐层前馈网络建模方法[J]. 控制与决策, 2012, 27(9): 1308-1319.
ZHANG R, DENG Z H, WANG S T, et al.Robust single hidden layer feedforward network modeling method for small sample data sets[J]. Control and decision, 2012, 27(9): 1308-1319.
[21] 周湶, 王时征, 廖瑞金, 等. 基于AdaBoost优化云理论的变压器故障诊断方法[J]. 高电压技术, 2015, 41(11): 3804-3811.
ZHOU J, WANG S Z, LIAO R J, et al.Transformer fault diagnosis method based on AdaBoost optimization cloud theory[J]. High voltage engineering, 2015, 41(11): 3804-3811.
[22] FREUND Y, SCHAPIRE R E.A decision-theoretic general ization of on-line learning and an application to boosting[J]. Journal of computer and system sciences, 1997, 55(1): 119-139.
PDF(1809 KB)

Accesses

Citation

Detail

Sections
Recommended

/