NUMERICAL CALCULATION AND EXPERIMENTAL STUDY ON STRAIGHT CENTER PIPE SPAR BUOY WAVE ENERGY MODEL

Li Meng, Wu Bijun, Wu Rukang

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (3) : 80-86.

PDF(2065 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2065 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (3) : 80-86. DOI: 10.19912/j.0254-0096.tynxb.2020-0543

NUMERICAL CALCULATION AND EXPERIMENTAL STUDY ON STRAIGHT CENTER PIPE SPAR BUOY WAVE ENERGY MODEL

  • Li Meng1,2, Wu Bijun3, Wu Rukang2
Author information +
History +

Abstract

The spar buoy wave energy model absorbs the wave energy by the self-oscillating motion of the floating body. The relative motion of the water column in the pipe was caused and the captured wave energy is converted by the added pneumatic damping. It can be studied as an oscillating single floating buoy. HydroStar hydrodynamics software is used to calculate the hydrodynamic performance of the straight center pipe model under different wave conditions. The effect of different added pneumatic damping on the Capture Width Ratio (CWR) of the model is compared and analyzed, and the optimal pneumatic damping is obtained. The performance of the model under three different total masses is studied, and the relationship between the optimal response wave period and the total mass of the model is obtained. The CWR of the spar buoy model was tested in a wave tank, and the experimental results obtained can further verify the numerical calculation results.

Key words

wave energy / oscillating water column (OWC) / numerical calculation / spar buoy / capture width ratio (CWR

Cite this article

Download Citations
Li Meng, Wu Bijun, Wu Rukang. NUMERICAL CALCULATION AND EXPERIMENTAL STUDY ON STRAIGHT CENTER PIPE SPAR BUOY WAVE ENERGY MODEL[J]. Acta Energiae Solaris Sinica. 2022, 43(3): 80-86 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0543

References

[1] FALCAO A.Wave energy utilization: A review of the technologies[J]. Renewable and sustainable energy reviews, 2010, 14(3): 899-918.
[2] HEATH T.A review of oscillating water columns[J]. Philosophical transactions a mathematical physical engineering sciences, 2012, 370(1959): 235-245.
[3] MCCOEMICK M.Analysis of a wave energy conversion buoy[J]. Journal of hydronautics, 1974, 8(3): 77-82.
[4] EVANS D.The oscillating water column wave-energy device[J]. Journal of applied mathematics, 1978, 22(4): 423-433.
[5] EVANS D.Wave-power absorption by systems of oscillating surface pressure distributions[J]. Journal of fluid mechanics, 1982, 114(1): 481-499.
[6] EVANS D, PORTER R.Hydrodynamic characteristics of an oscillating water column device[J]. Applied ocean research, 1995, 17: 155-164.
[7] 蔡国民. 灯浮标用波力发电装置[J]. 水运工程, 1983, 8(4): 47-49, 4.
CAI G M.Navigation light buoy generated power by waves[J]. Marine traffic engineering, 1983, 8(4): 47-49, 4.
[8] 吴藻华, 夏洪峰, 戴李民. 浮体形状对波能转换浮标性能的影响[J]. 海洋工程, 1984, 2(4): 59-62.
WU Z H, XIA H F, DAI L M.Influence of floating body shape on wave energy conversion buoy performance[J]. The ocean engineering, 1984, 2(4): 59-62.
[9] WHITTAKER T J, MC-ILHAGGER D S, BARR A G. Wells turbines for navigation buoys[M]. Energy by: Twidell J. Energy for rural and island communities. Oxfard: Pergamon Press. Ltd., 1984: 289-297.
[10] 黄国樑, 冯伯俊, 刘天威, 等. 改进波浪发电浮标性能的试验研究[J]. 海洋工程, 1994, 12(1): 104-110.
HUANG G L, FENG B J, LIU T W, et al.An experimental study for improving the performance of a wave energy conversion buoy[J]. The ocean engineering, 1994, 12(1): 104-110.
[11] 李猛, 陈天祥, 伍儒康, 等. 中心管底部形状对浮标波能转换性能影响的实验研究[J]. 新能源进展, 2016, 4(1): 15-19.
LI M, CHEN T X, WU R K, et al.Experimental research on effect of center-pipe bottom shape on performance of wave energy conversion buoy[J]. Advances in new and renewable energy, 2016, 4(1): 15-19.
[12] 吴必军, 李猛, 陈天祥, 等. 改进型中心管模型能量转换性能试验及样机设计[J]. 海洋工程, 2017, 35(1): 97-104.
WU B T, LI M, CHEN T X, et al.An experimental study on energy conversion of the modified center pipe buoy and the design of prototypes[J]. The ocean engineering, 2017, 35(1): 97-104.
[13] 曹守启, 姜楠, 李佳佳, 等. 中心管管径变化对浮标波能转换性能的影响分析[J]. 水利水电技术, 2019, 50(1): 186-191.
CAO S Q, JIANG N, LI J J, et al.Analysis of effect of pipe diameter variation of central tube on wave energy conversion performance of buoy[J]. Water resources and hydropower engineering, 2019, 50(1): 186-191.
[14] FALCAO A, HENRIQUES J, CANDIDO J.Dynamics and optimization of the OWC spar buoy wave energy converter[J]. Renewable energy, 2012, 48: 369-381.
[15] FALCAO A, HENRIQUES J, GATO L, et al.Air turbine choice and optimization for floating oscillating-water-column wave energy converter[J]. Ocean engineering, 2014, 75: 148-156.
[16] GOMES R, HENRIQUES J, GATO L, et al.Time-domain simulation of a slack-moored floating oscillating water column and validation with physical model tests[J]. Renewable energy, 2020, 149: 165-180.
[17] OIKONOMOU C, GOMES R, GATO L, et al.On the dynamics of an array of spar-buoy oscillating water column devices with inter-body mooring connections[J]. Renewable energy, 2020, 148: 309-325.
PDF(2065 KB)

Accesses

Citation

Detail

Sections
Recommended

/