STUDY ON TERRAIN CLASSIFICATION METHODS OF MOBILE ROBOTS FOR PHOTOVOLTAIC MODULES CLEANING

Li Cuiming, Liu Shuang, Gong Jun

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (3) : 210-215.

PDF(2009 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2009 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (3) : 210-215. DOI: 10.19912/j.0254-0096.tynxb.2020-0551

STUDY ON TERRAIN CLASSIFICATION METHODS OF MOBILE ROBOTS FOR PHOTOVOLTAIC MODULES CLEANING

  • Li Cuiming, Liu Shuang, Gong Jun
Author information +
History +

Abstract

Considering the classification of uneven terrain for photovoltaic power stations during photovoltaic panel cleaning by mobile robots, a classification method based on W-MC-MS was then proposed to optimize the Bag-of-visual-word Model to classify the terrain images. First of all, the SIFT features are extracted from the actual terrain images of the photovoltaic power stations; then, the K-means clustering algorithm is adopted to calculate these features and generate the initial code dictionary of terrain images; afterwards the W-MC-MS criterion is adopted for optimization so as to reduce the size of codebook dictionary and improve the performance of visual terrain classification. The experiment considered the average classification accuracy and the cost of classification time regarding the terrain images as the evaluation standards, compared the classification performance of the codebook dictionary before and after optimization, and finally verified the validity of the optimization method in terrain classification.

Key words

mobile robots / PV modules / K-means clustering / classification of terrain / bag-of-visual-word model

Cite this article

Download Citations
Li Cuiming, Liu Shuang, Gong Jun. STUDY ON TERRAIN CLASSIFICATION METHODS OF MOBILE ROBOTS FOR PHOTOVOLTAIC MODULES CLEANING[J]. Acta Energiae Solaris Sinica. 2022, 43(3): 210-215 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0551

References

[1] 肖运启, 张美玲, 郭治昌, 等. 山地光伏电站固定式组件安装角度优化方法[J]. 太阳能学报, 2020, 41(5): 329-335.
XIAO Y Q, ZHANG M L, GUO Z C, et al.Optimun design for tilt and orientation angle of fixed pv module of pv power station on mountainous area[J]. Acta energiae solaris sinica, 2020, 41(5): 329-335.
[2] PAPADAKIS P.Terrain traversability analysis methods for un-manned ground vehicles: A survey[J]. Engineering applications of artificial intelligence, 2013, 26(4): 1373-1385.
[3] LOWE D G.Object recognition from local scale-invariant features[C]//Proceedings of the 7th IEEE International Conference on Computer Vision, Kerkya, Greece, 1999: 1150-1157.
[4] LOWE D G.Distinctive image feature from scale-invariant keypoints[J]. International journal of computer vision. 2004, 60: 91-100.
[5] ZENKER S, AKSOY E E, GOLDSCHMIDT D, et al.Visual terrain classification for selecting energy efficient gaits of a hexapod robot[C]//2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics(AIM), IEEE, Wollongong, NSW, Austruling, 2013.
[6] FILITCHKIN P, BYL K.Feature-based terrain classification for LittleDog[C]//2012 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS), IEEE, 2012.
[7] 赵理君, 唐娉, 霍连志, 等. 图像场景分类中视觉词包模型方法综述[J]. 中国图象图形学报, 2014, 19(3): 333-343.
ZGAO L J, TANG P, HUO L Z, et al.Review of the bag-of-visual-words models in image scene classification[J]. Chinese journal of image graphics, 2014, 19(3): 333-343.
[8] ALQASRAWI Y, NEAGU D, COWLING P I.Fusing integrated visual vocabularies-based bag of visual words and weighted colour moments on spatial pyramid layout for natural scene image classification[J]. Signal image & video processing, 2013, 7(4): 759-775.
[9] LU Y N, XIE F Y, LIU T L, et al.No reference quality assessment for multiply-distorted images based on an improved bag-of-words model[J]. IEEE signal processing letters, 2015, 22(10): 1811-1815.
[10] QU Y Y, WU S J, LIU H, et al.Evaluation of local features and classifiers in BOW model for image classification[J]. Multimedia tools and applications, 2014, 70(2): 605-624.
[11] 赵燕伟, 朱芬, 桂方志, 等. 基于可拓距的改进k-means聚类算法[J]. 智能系统学报, 2020, 15(2): 344-351.
ZHAO Y W, ZHU F, GUI F Z, et al.Improved k-means algorithm optimizing the initial clustering centers based on extension distance[J]. Journal of intelligent systems, 2020, 15(2): 344-351.
[12] GUPTA S, KUMAR M, ANUPAM G.Improved object recognition results using SIFT and ORB feature detector[J]. Springer US, 2019, 78: 34157-34171.
[13] JIANG J L, WU D M, JIANG Z.A correlation-based bag of visual words for image classification[C]//2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference(ITOEC), Chongqing, China, 2017: 917-920.
[14] KELBERT M, SUHOV Y.Information Theory and Coding by Example[M]. Oxford: Cambridge University Press, 2013: 18-86.
[15] 薛琮琳, 郭剑辉, 马玲玲. 基于空间特征的多平面支持向量机地形分类[J]. 计算机与数字工程. 2019, 47(5): 1217-1222.
XUE C L, GUO J H, MA L L.Terrain classification of multi-plane support vector machine based on spatial feature[J]. Computer and digital engineering, 2019, 47(5): 1217-1222.
PDF(2009 KB)

Accesses

Citation

Detail

Sections
Recommended

/