WIND TURBINE ROLLING BEARING FAULT DIAGNOSIS METHOD BASED ON ENHANCED MORPHOLOGICAL FILTERING AND THIRD-ORDER CUMULANT DIAGONAL SLICE SPECTRUM

Luo Yuanqing, Chen Changzheng, Zhao Siyu

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (3) : 373-381.

PDF(2301 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(2301 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (3) : 373-381. DOI: 10.19912/j.0254-0096.tynxb.2020-0577

WIND TURBINE ROLLING BEARING FAULT DIAGNOSIS METHOD BASED ON ENHANCED MORPHOLOGICAL FILTERING AND THIRD-ORDER CUMULANT DIAGONAL SLICE SPECTRUM

  • Luo Yuanqing1, Chen Changzheng1,2, Zhao Siyu1
Author information +
History +

Abstract

To solve the problem that the fault signal of the wind turbine rolling bearing is difficult to be identified by the strong background noise, a fault detection method based on the enhanced morphological filtering and the third-order cumulant diagonal slice spectrum is proposed. Firstly, this method constructs a new enhanced morphology operator (EMDO) based on the basic morphology operators. Then, the feature energy factor is used to select the optimal structural element scale of the EMDO operator. Finally, the third-order cumulant diagonal slice spectrum de-noising performance is used to further enhance the feature extraction ability of the EMDO operator. The results of simulation and comparison experiments show that the method proposed in this paper can effectively eliminate the interference caused by Gaussian white noise and enhance the extraction of fault feature information of the wind turbine rolling bearing.

Key words

wind turbines / morphological filtering / third-order cumulant diagonal slice spectrum / rolling bearing / fault diagnosis

Cite this article

Download Citations
Luo Yuanqing, Chen Changzheng, Zhao Siyu. WIND TURBINE ROLLING BEARING FAULT DIAGNOSIS METHOD BASED ON ENHANCED MORPHOLOGICAL FILTERING AND THIRD-ORDER CUMULANT DIAGONAL SLICE SPECTRUM[J]. Acta Energiae Solaris Sinica. 2022, 43(3): 373-381 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0577

References

[1] 谷晓娇, 陈长征. 基于VMD和QPSO-SR的风电机组轴承故障提取方法[J]. 太阳能学报, 2019, 40(10): 2946-2952.
GU X J, CHEN C Z.Fault extraction method of wind turbine bearing based on VMD and QPSO-SR[J]. Acta energiae solaris sinica, 2019, 40(10): 2946-2952.
[2] 田晶, 王英杰, 王志. 基于EEMD与空域相关降噪的滚动轴承故障诊断方法[J]. 仪器仪表学报, 2018, 39(7): 144-151.
TIAN J, WANG Y J, WANG Z.Fault diagnosis for rolling bearing based on EEMD and spatial correlation denoising[J]. Chinese journal of scientific instrument, 2018, 39(7): 144-151.
[3] 熊国良, 胡俊锋, 陈慧. 基于SK-NLM包络的滚动轴承故障冲击特征增强[J]. 仪器仪表学报, 2016, 37(10): 2176-2184.
XIONG G L, HU J F, CHEN H.Rolling bearing fault impact feature enhancement based on spectral kurtosis and non-local means[J]. Chinese journal of scientific instrument, 2016, 37(10): 2176-2184.
[4] 崔锡龙, 王红军, 邢济收, 等. 广义形态滤波和VMD分解的滚动轴承故障诊断[J]. 电子测量与仪器学报, 2018, 32(4): 51-57.
CUI X L, WANG H J, XING J S, et al.Rolling bearing fault diagnosis of generalized morphological filtering and VMD decomposition[J]. Journal of electronic measurement and instrumentation, 2018, 32(4): 51-57.
[5] 李奕璠, 刘建新, 林建辉. 基于变尺度形态滤波的高速列车万向轴故障辨识研究[J]. 机械工程学报, 2018, 54(4): 278-284.
LI Y F, LIU J X, LIN J H.High speed train cardan shaft fault detection based on time-varying scale morphology filter[J]. Journal of mechanical engineering, 2018, 54(4): 278-284.
[6] 吴小涛, 杨锰, 袁晓辉, 等. 基于峭度准则EEMD及改进形态滤波方法的轴承故障诊断[J]. 振动与冲击, 2015, 34(2): 38-44.
WU X T, YANG M, YUAN X H, et al.Bearing fault diagnosis using EEMD and improved morphological filtering method based on kurtosis criterion[J]. Journal of vibration and shock, 2015, 34(2): 38-44.
[7] 张小龙, 张氢, 秦仙蓉, 等. 基于ITD-形态滤波和Teager能量谱的轴承故障诊断[J]. 仪器仪表学报, 2016, 37(4): 788-795.
ZHANG X L, ZHANG Q, QIN X R, et al.Fault diagnosis method for rolling bearing based on ITD-morphological filter and Teager energy spectrum[J]. Chinese journal of scientific instrument, 2016, 37(4): 788-795.
[8] LI Y F, ZUO M J, CHEN Y J, et al.An enhanced morphology gradient product filter for bearing fault detection[J]. Mechanical systems & signal processing, 2018, 109: 166-184.
[9] YAN X A, LIU Y, JIA M P.Research on an enhanced scale morphological-hat product filtering in incipient fault detection of rolling element bearings[J]. Measurement, 2019, 147: 106856.
[10] 余建波, 李传锋, 吕靖香. 轴承故障信号的平均组合差值形态滤波分析[J]. 浙江大学学报(工学版), 2018, 52(10): 1845-1853, 1910.
YU J B, LI C F, LYU J X.Average combination difference morphological filter analysis on fault signals of rolling bearing[J]. Journal of Zhejiang University(engineering science), 2018, 52(10): 1845-1853, 1910.
[11] 范虹, 孟庆丰, 张优云, 等. 基于三阶累积量对角切片的信号特征检测[J]. 计算机工程与应用, 2006, 42(36): 7-8.
FAN H, MENG Q F, ZHANG Y Y, et al.Signal feature detection based on third order cumulant diagonal slice[J]. Computer engineering and applications, 2006, 42(36): 7-8.
[12] 李奕璠, 刘建新, 刘伟渭. 二次频率耦合的对角切片谱分析[J]. 振动工程学报, 2017, 30(1): 135-139.
LI Y F, LIU J X, LIU W W, et al.Diagonal slice spectrum analysis of quadratic frequency coupling[J]. Journal of vibration engineering, 2017, 30(1): 135-139.
[13] SERRA J.Image analysis and mathematical morphology[M/OL]. https://1lib.education/book/882452/585869/,1982.
[14] MIAO Y, ZHAO M, LIN J, et al.Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling element bearings[J]. Mechanical systems & signal processing, 2017, 92: 173-195.
[15] YAN X A, JIA M P, ZHANG W, et al.Fault diagnosis of rolling element bearing using a new optimal scale morphology analysis method[J]. ISA transactions, 2018, 73: 165-180.
[16] Bearing Data Center-Case Western Reserve University. [EB/OL].http://csegroups.case.edu/bearingdatacenter/pages/download-data-file.
PDF(2301 KB)

Accesses

Citation

Detail

Sections
Recommended

/