SUPER-SHORT-TERM FORECAST OF SOLAR IRRADIANCE BASED ON CNN-Bi-LSTM

Ni Chao, Wang Cong, Zhu Tingting, Guo Yiren

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (3) : 197-202.

PDF(1829 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1829 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (3) : 197-202. DOI: 10.19912/j.0254-0096.tynxb.2020-0581

SUPER-SHORT-TERM FORECAST OF SOLAR IRRADIANCE BASED ON CNN-Bi-LSTM

  • Ni Chao1, Wang Cong1, Zhu Tingting1,2, Guo Yiren1
Author information +
History +

Abstract

Since solar radiation causes the uncertainties and fluctuation of photovoltaic power, which is harmful to the stability and safety of the grid when photovoltaic power generation is connected to the grid, a new super-short-term prediction model of solar radiation whas proposed in this paper. Firstly, a one-dimensional convolution neural network is constructed for data fusion and feature transformation of several key meteorological variables; and then a bidirectional Long Short Term Memory network model is developed to predict global solar radiation in the next 15 minutes. The experimental results show that the proposed model can effectively improve the predicting accuracy compared with the traditional machine learning methods, and that the forecast skill of the proposed model has been improved about 14% over the persistence model on the normalized root mean squared errors.

Key words

solar irradiance / forecasting / convolutional neural networks / super-short-term / bidirectional long short-term memory

Cite this article

Download Citations
Ni Chao, Wang Cong, Zhu Tingting, Guo Yiren. SUPER-SHORT-TERM FORECAST OF SOLAR IRRADIANCE BASED ON CNN-Bi-LSTM[J]. Acta Energiae Solaris Sinica. 2022, 43(3): 197-202 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0581

References

[1] CUI S C, WANG Y-W, LI C J, et al.Prosumer community: A risk aversion energy sharing model[J]. IEEE transactions on sustainable energy, 2020, 11(2): 828-838.
[2] 陈中, 车松阳. 基于云变换的光伏出力预测模型[J]. 太阳能学报, 2019, 40(11): 3054-3061.
CHEN Z, CHE S Y.Photovoltaic output forecast based on cloud models[J]. Acta energiae solaris sinica, 2019, 40(11): 3054-3061.
[3] ZHU T T, ZHOU H, WEI H K, et al.Inter-hour direct normal irradiance forecast with multiple data types and time-series[J]. Journal of modern power systems and clean energy, 2019, 7(5): 1319-1327.
[4] LAW E W, PRASAS A A, KAY M, et al.Direct normal irradiance forecasting and its application to concentrated solar thermal output forecasting—A review[J]. Solar energy, 2014, 108: 287-307.
[5] SUN H W, YAN D, ZHAO N, et al.Empirical investigation on modeling solar radiation series with ARMA-GARCH models[J]. Energy conversion and management, 2015, 92: 385-395.
[6] BOUZGOU H, GUEYMARD C A.Minimum redundancy—Maximum relevance with extreme learning machines for global solar radiation forecasting: Toward an optimized dimensionality reduction for solar time series[J]. Solar energy, 2017, 158: 595-609.
[7] 马燕峰, 蒋云涛, 郝毅, 等. 基于非线性自回归神经网络的GHI预测[J]. 太阳能学报, 2019, 40(3): 733-740.
MA Y F, JIANG Y T, HAO Y, et al.GHI forecast based on nonlinear autoregressive neural network[J]. Acta energiae solaris sinica, 2019, 40(3): 733-740.
[8] 殷豪, 陈云龙, 孟安波, 等. 基于二次自适应支持向量机的光伏输出功率预测[J]. 太阳能学报, 2019, 40(7): 1866-1873.
YIN H, CHEN Y L, MENG A B, et al.Forecasting photovoltaic power based on quadric self-adaptive SVM model[J]. Acta energiae solaris sinica, 2019, 40(7): 1866-1873.
[9] 王粟, 江鑫, 曾亮, 等. 基于VMD-DESN-MSGP模型的超短期光伏功率预测[J]. 电网技术, 2020, 44(3): 917-926.
WANG L, JIANG X, ZENG L, et al.Ultra-short-term photovoltaic power prediction based on VMD-DESN-MSGP model[J]. Power system technology, 2020, 44(3): 917-926.
[10] 田翠霞, 黄敏, 朱启兵. 基于EMD-LMD-LSSVM联合模型的逐时太阳辐照度预测[J]. 太阳能学报, 2018, 39(2): 504-512.
TIAN C X, HUANG M, ZHU Q B.Hourly solar irradiance forecast based on EMD-LMD-LSSVM joint model[J]. Acta energiae solaris sinica, 2018, 39(2): 504-512.
[11] SRIVASTAVA S, LESSMANN S.A comparative study of LSTM neural networks in forecasting day-ahead global horizontal irradiance with satellite data[J]. Solar energy, 2018, 162: 232-247.
[12] ANDREAS A, STOFFEL T. NREL solar radiation research laboratory(SRRL): Baseline measurement system (BMS); golden colorado (Data)[R]. NREL Report No. DA-5500-56488.1981. http://dx.doi.org/10.5439/1052221.
[13] WANG Y J, LIU Q.Comparison of Akaike information criterion (AIC) and Bayesian information criterion (BIC) in selection of stock-recruitment relationships[J]. Fisheries research, 2006, 77(2): 0-225.
[14] GU J X, WANG Z H, KUEN J, et al.Recent advances in convolutional neural networks[J]. Pattern recognition, 2018, 77: 354-337.
[15] HOCHREITER S, SCHMIDHUBER J.Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.
PDF(1829 KB)

Accesses

Citation

Detail

Sections
Recommended

/