STUDY ON PERFORMANCE OF PHOTOVOLTAIC COLD STORAGE BASED ON CONTROL OF DYNAMIC IMPEDANCE MATCHING

Zhou Xiaoyan, Ma Xun, Li Ming, Hu Chengzhi, Li Guoliang, Wang Yunfeng

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (3) : 180-187.

PDF(1952 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1952 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (3) : 180-187. DOI: 10.19912/j.0254-0096.tynxb.2020-0594

STUDY ON PERFORMANCE OF PHOTOVOLTAIC COLD STORAGE BASED ON CONTROL OF DYNAMIC IMPEDANCE MATCHING

  • Zhou Xiaoyan1, Ma Xun2, Li Ming2, Hu Chengzhi2, Li Guoliang2, Wang Yunfeng2
Author information +
History +

Abstract

To ensure the operational performance of photovoltaic (PV) refrigeration,a dynamic equivalent impedance matching (DEIM) control strategy is presented in the paper for off-grid PV cold storage. Impedance converters are used to match PV generation and load by adjusting different duty cycles with pulse width modulation (PWM). In addition, the paper presents a model of the maximum power point (MPP) equivalent impedance for the PV system, which is influenced by temperature, irradiance, and the equivalent impedance of MPP under the standard test conditions (STC). Accordingly, a 5.4 kW direct-driven cold storage with distributed PV system is established based on the theory and the controlling strategy. The results indicate that the DEIM can significantly reduce the impact of solar radiation fluctuation on PV cold storage systems. Compared to the condition with traditional strategy, the novel methods presented by the paper improve the values of PV modules conversion efficiency,the production quantity of ice, and the rate of refrigeration system utilization increased by 41.0%, 64.1%,and 63.5%,respectively. In addition, the paper will be a reference that provides a theoretical analysis and optimization for PV cold storage system control.

Key words

photovoltaic arrays / pulse width modulation / maximum power point / dynamic impedance matching / cold storage

Cite this article

Download Citations
Zhou Xiaoyan, Ma Xun, Li Ming, Hu Chengzhi, Li Guoliang, Wang Yunfeng. STUDY ON PERFORMANCE OF PHOTOVOLTAIC COLD STORAGE BASED ON CONTROL OF DYNAMIC IMPEDANCE MATCHING[J]. Acta Energiae Solaris Sinica. 2022, 43(3): 180-187 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0594

References

[1] 贺红霞, 申江, 朱宗升. 果蔬预冷技术研究现状与发展趋势[J]. 食品科技, 2019, 44(2): 46-52.
HE H X, SHEN J, ZHU Z H.Research status and development trends on precooling technology of fruits and vegetables[J]. Food science and technology, 2019, 44(2): 46-52.
[2] 赵晓芳, 王贵禧, 梁丽松, 等. 不同包装及延时预冷处理对模拟冷链贮运及货架期期间桃果实品质的影响[J]. 食品科学, 2009(6): 255-258.
ZHAO X F, WANG G X, LIANG L S, et al.Effects of pre-cooling delay and different packaging treatments on quality of peach fruits in model condition of cold-chain transportation and shelf-life[J]. Food science, 2009(6): 255-258.
[3] 郭嘉明, 魏鑫钰, 杜县南, 等. 基于传热传质的荔枝预冷果温和质量损失率预测[J]. 农业机械学报, 2019, 50(3): 330-336.
GUO J M, WEI X Y, DU X N, et al.Prediction on fruit temperature and weight loss rate for litchi pre-cooling based on heat and mass transfer[J]. Transactions of the Chinese Society of Agricultural Machinery, 2019, 50(3): 330-336.
[4] HAROUN R, AROUDI A E, CID-PASTOR A, et al.Impedance matching in photovoltaic systems using cascaded boost converters and sliding-mode control[J]. IEEE transactions on power electronics, 2015, 30(6): 3185-3199.
[5] SPIERS D J, RASINKOSKI A A.Limits to battery lifetime in photovoltaic applications[J]. Solar energy, 1996, 58(4-6): 147-154.
[6] MURPHY M D, O'MAHONY M J, UPTON J. Comparison of control systems for the optimisation of ice storage in a dynamic real time electricity pricing environment[J]. Applied energy, 2015, 149: 392-403.
[7] XU Y F, MA X, HASSANIEN R H E, et al. Performance analysis of static ice refrigeration air conditioning system driven by household distributed photovoltaic energy system[J]. Solar energy, 2017, 158: 147-160.
[8] 王瑞, 李明, 王云峰, 等. 分布式光伏直驱制冰系统的实验研究[J]. 云南师范大学学报(自然科学版), 2018, 38(1): 11-15.
WANG R, LI M, WANG Y F, et al.Experimental study on the distributed photovoltaic direct-drive ice making system[J]. Journal of Yunan Normal University(natural sciences edition), 2018, 38(1): 11-15.
[9] 唐磊, 曾成碧, 徐伟, 等. 一种新颖的光伏自适应变步长最大功率点跟踪算法[J]. 电力自动化设备, 2013, 33(11): 132-137.
TANG L, ZENG C B, XU W, et al.Variable-step adaptive MPPT algorithm for photovoltaic system[J]. Electric power automation equipment, 2013, 33(11): 132-137.
[10] AHMED J, SALAM Z.An Enhanced adaptive P&O MPPT for fast and efficient tracking under varying environmental conditions[J]. IEEE transactions on sustainable energy, 2018, 9(3): 1487-1496.
[11] 郑颖楠, 王俊平, 张霞. 基于动态等效阻抗匹配的光伏发电最大功率点跟踪控制[J]. 中国电机工程学报, 2011, 31(2): 57-64.
ZHENG Y N, WANG J P, ZHANG X.Maximum power point tracking control of photovoltaic power generation based on dynamic equivalent impedance matching[J]. Proceedings of the CSEE, 2011, 31(2): 57-64.
[12] 刘林, 鲁月娥. 基于阻抗匹配和爬山搜索法的光伏MPPT控制研究[J]. 电工电气, 2017(3): 1-5.
LIU L, LU Y E.Control study on maximum power point tracking of photovoltaic system based on impedance matching and hill-climbing search method[J]. Electrotechnics electric, 2017(3): 1-5.
[13] 邓孝祥, 张家琪. 基于坐标变换的三相逆变并网控制策略[J]. 通信电源技术, 2019(9): 25-28.
DENG X X, ZHANG J Q.Grid-connected control strategy of three-phase inverters based on coordinate transformation[J]. Telecom power technologies, 2019(9): 25-28.
[14] CHEN Y J, SUN Y Z, MENG Z, et al.An improved explicit double-diode model of solar cells: Fitness verification and parameter extraction[J]. Energy conversion & management, 2018, 169: 345-358.
[15] 张卫平. 开关变换器的建模与控制[M]. 北京: 中国电力出版社, 2006: 25-31.
ZHANG W P.Model and control of switch converters[M]. Beijing: China Electric Power Press, 2006: 25-31.
[16] HAN Y H, LI M, WANG Y F, et al.Impedance matching control strategy for a solar cooling system directly driven by distributed photovoltaics[J]. Energy, 2019, 168: 953-965.
[17] WANG W, LI M, HASSANIEN R H E, et al. Optimization of thermal performance of the parabolic trough solar collector systems based on GA-BP neural network model[J]. International journal of green energy, 2017, 14(10): 819-830.
PDF(1952 KB)

Accesses

Citation

Detail

Sections
Recommended

/