RESEARCH ON BLADE DAMAGE IDENTIFICATION OF ACTIVE WIND TURBINE BASED ON MODAL PARAMETERS

Gu Yongqiang, Feng Jinfei, Zhang Zhewei, Tian Zhichang, Gong Yunlong

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (3) : 350-355.

PDF(1659 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1659 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (3) : 350-355. DOI: 10.19912/j.0254-0096.tynxb.2020-0598

RESEARCH ON BLADE DAMAGE IDENTIFICATION OF ACTIVE WIND TURBINE BASED ON MODAL PARAMETERS

  • Gu Yongqiang, Feng Jinfei, Zhang Zhewei, Tian Zhichang, Gong Yunlong
Author information +
History +

Abstract

Based on the numerical simulation of various damage conditions of the small fan blades in the stalling and running states, the modal analysis was carried out to study the method to identify and locate the blade damage, and the author calculated the weighted flexibility curvature index to establish Fitting function of weighted flexibility curvature value and stiffness damage value. The results are as follows: firstly, whether the blade is damaged can be judged by the change of natural frequency. Secondly, regardless of the blade damage, as the blade speed increases, its natural frequency will increase. If the weighted flexibility curvature value mutates at the damage location, there will be a peak protrusion, and along with the increasing of the degree of damage, the peak protrusion becomes more obvious. At the same time, the fitting function proposed in this paper has minor errors and high reliability, which can locate the damage of the blade and quantify the degree of damage.

Key words

wind turbines / blades / numerical simulation / modal analysis / weighted flexibility curvature value

Cite this article

Download Citations
Gu Yongqiang, Feng Jinfei, Zhang Zhewei, Tian Zhichang, Gong Yunlong. RESEARCH ON BLADE DAMAGE IDENTIFICATION OF ACTIVE WIND TURBINE BASED ON MODAL PARAMETERS[J]. Acta Energiae Solaris Sinica. 2022, 43(3): 350-355 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0598

References

[1] 曾海勇. 应力刚化及损伤对风机叶片模态参数影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
ZENG H Y.Study on effect of stress stiffening and damage on modal parameters of wind turbine blades[D]. Harbin: Harbin Institute of Technology, 2011.
[2] 李德源, 方军, 吕文阁, 等. 水平轴风力机叶片非定常气动特性分析[J]. 沈阳工业大学学报, 2011, 33(1): 36-40.
LI D Y, FANG J, LYU W G, et al.Unsteady aerodynamic characteristic analysis of horizontal axis wind turbine blade[J]. Journal of Shenyang University of Technology, 2011, 33(1): 36-40.
[3] PATIL D P, MAITI S K.Experimental verification of a method of detection of multiple cracks in beams based on frequency measurements[J]. Journal of sound and vibration, 2005, 281(1/2): 439-451.
[4] 谢峻, 韩大建. 一种改进的基于频率测量的结构损伤识别方法[J]. 工程力学, 2004, 21(1): 21-25.
XIE J, HAN D J.An improved method for structure damage detection based on frequency measurement[J]. Engineering mechanics, 2004, 21(1): 21-25.
[5] 王乐, 杨智春, 谭光辉, 等. 基于固有频率向量的结构损伤检测方法[J]. 应用力学学报, 2008, 25(4): 709-713.
WANG L, YANG Z C, TAN G H, et al.Structural damage detection based on natural frequency vector[J]. Chinese journal of applied mechanics, 2008, 25(4): 709-713.
[6] 李录平, 李芒芒, 晋风华, 等. 振动检测技术在风力机叶片裂纹故障监测中的应用[J]. 热能动力工程, 2013, 28(2): 207-212.
LI L P, LI M M, JIN F H, et al.Applications of the vibration detection technologies in monitoring the blade crack fault of wind turbines[J]. Journal of engineering for thermal energy and power, 2013, 28(2): 207-212.
[7] 薛刚, 苏天. 基于动力特性及BP神经网络的风电机组叶片损伤识别[J]. 太阳能学报, 2018, 39(10): 2945-2952.
XUE G, SU T.Damage identification of wind turbine blades based on dynamic characteristics and BP neural network[J]. Acta energiae solaris sinica, 2018, 39(10): 2945-2952.
PDF(1659 KB)

Accesses

Citation

Detail

Sections
Recommended

/