MESHLESS HEAT TRANSFER ANALYSIS MODEL OF ORTHOTROPIC PHASE CHANGE MATERIALS AND ITS APPLICATION

Zhang Jianping, Hu Huiyao, Wu Shuying, Liu Tingxian, Wang Zhiqi, Huang Jian

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (3) : 242-250.

PDF(4842 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(4842 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (3) : 242-250. DOI: 10.19912/j.0254-0096.tynxb.2020-0671

MESHLESS HEAT TRANSFER ANALYSIS MODEL OF ORTHOTROPIC PHASE CHANGE MATERIALS AND ITS APPLICATION

  • Zhang Jianping, Hu Huiyao, Wu Shuying, Liu Tingxian, Wang Zhiqi, Huang Jian
Author information +
History +

Abstract

A calculation model for heat transfer analysis of orthotropic phase change materials is established using Element-free Galerkin (EFG) method. Based on the proposed model, the phase change heat transfer analysis of solar thermal storage water tank and shell and tube latent heat storage unit with orthotropic phase change materials are completed by the developed programs, and the effects of thermal conductivity factor and material off-angle on the phase change heat transfer characteristic of composite are explored. The research indicates that the calculation accuracy of EFG temperature field and phase interfaces is higher than the finite element method under the same node arrangement, and EFG method has obvious advantages in the dynamic phase interfaces tracking. The increase of thermal conductivity factor and decrease of material off-angle can enhance the heat transfer performance, accelerate the phase change process of composite phase change materials and improve the thermal storage / release efficiency of phase change solar energy storage device effectively. The reasonable values of thermal conductivity factor and material off-angle are 4-6 and 0°-15° for solar thermal storage water tank and shell and tube latent heat storage unit with orthotropic phase change materials, respectively.

Key words

solar energy / phase change materials / thermal storage devices / heat transfer analysis / element-free Galerkin method

Cite this article

Download Citations
Zhang Jianping, Hu Huiyao, Wu Shuying, Liu Tingxian, Wang Zhiqi, Huang Jian. MESHLESS HEAT TRANSFER ANALYSIS MODEL OF ORTHOTROPIC PHASE CHANGE MATERIALS AND ITS APPLICATION[J]. Acta Energiae Solaris Sinica. 2022, 43(3): 242-250 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0671

References

[1] PANDEY A K, HOSSAIN M S, TYAGI V V, et al.Novel approaches and recent developments on potential applications of phase change materials in solar energy[J]. Renewable and sustainable energy reviews, 2018, 82: 281-323.
[2] JIANG Y F, LIU M, SUN Y P.Review on the development of high temperature phase change material composites for solar thermal energy storage[J]. Solar energy materials and solar cells, 2019, 203: 110164.
[3] MIN P, LIU J, LI X F, et al. Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion[J]. Advanced functional materials, 2018, 28(51): 1805365.1-1805365.9.
[4] LUO J F, YIN H W, LI W Y, et al.Numerical and experimental study on the heat transfer properties of the composite paraffin/expanded graphite phase change material[J]. International journal of heat and mass transfer, 2015, 84: 237-244.
[5] GHALAMBAZ M, ZHANG J. Conjugate solid-liquid phase change heat transfer in heatsink filled with phase change material-metal foam[J]. International journal of heat and mass transfer, 2020, 146: 118832.1-118832.18.
[6] 李安桂, 史丙金, 张婉卿, 等. 基于太阳能利用的相变蓄热水箱结构优化[J]. 太阳能学报, 2020, 41(2): 217-224.
LI A G, SHI B J, ZHANG W Q, et al.Structure optimization of phase change thermalstorage water tank based on solar energy utilization[J]. Acta energiae solaris sinica, 2020, 41(2): 217-224.
[7] WU S F, YAN T, KUAI Z H, et al.Experimental and numerical study of modified expanded graphite/hydrated salt phase change material for solar energy storage[J]. Solar energy, 2020, 205: 474-486.
[8] CAO X L, YUAN Y P, XIANG B, et al.Numerical investigation on optimal number of longitudinal fins in horizontal annular phase change unit at different wall temperatures[J]. Energy and buildings, 2018, 158: 384-392.
[9] MORTAZAVINEJAD S M, MOZAFARIFARD M.Numerical investigation of two-dimensional heat transfer of an absorbing plate of a flat-plate solar collector using dual-reciprocity method based on boundary element[J]. Solar energy, 2019, 191: 332-340.
[10] EL MANSOURI A, HASNAOUI M, AMAHMID A, et al.Transient modeling of a salt gradient solar pond using a hybrid finite-volume and cascaded lattice-Boltzmann method: thermal characteristics and stability analysis[J]. Energy conversion and management, 2018, 158: 416-429.
[11] JOSYULA T, SINGH S, DHIMAN P. Numerical investigation of a solar air heater comprising longitudinally finned absorber plate and thermal energy storage system[J]. Journal of renewable and sustainable energy, 2018, 10(5): 055901.1-055901.22.
[12] 穆磊, 王振华, 贺志宏, 等. 相变传热问题的再生核粒子-最小二乘配点法[J]. 太阳能学报, 2016, 37(5): 1270-1276.
MU L, WANG Z H, HE Z H, et al.Reproducing kernel partical-least squares collocation method for phase change problem[J]. Acta energiae solaris sinica, 2016, 37(5): 1270-1276.
[13] VERTNIK R, SARLER B.Meshless local radial basis function collocation method for convective-diffusive solid-liquid phase change problems[J]. International journal of numerical methods for heat and fluid flow, 2006, 16(5): 617-640.
[14] CAI L Q, WANG X D,YAO M, et al.Element-free Galerkin meshless method on solidification behavior inside continuous casting mold[J]. Metallurgical and materials transactions, 2020, 51: 1113-1126.
[15] SINGH S, BHARGAVA R.Numerical simulation of a phase transition problem with natural convection using hybrid FEM/EFGM technique[J]. International journal of numerical methods for heat and fluid flow, 2015, 25(3): 570-592.
[16] YANG H T, HE Y Q.Solving heat transfer problems with phase change via smoothed effective heat capacity and element-free Galerkin methods[J]. International communications in heat and mass transfer, 2010, 37(4): 385-392.
[17] ZHANG J P, ZHOU G Q, GONG S G, et al.Steady heat transfer analysis of anisotropic structure based on element-free Galerkin method[J]. International journal of thermal sciences, 2017, 121: 163-181.
[18] ZHANG J P, ZHOU G Q, GONG S G, et al.Transient heat transfer analysis of anisotropic material by using element-free Galerkin method[J]. International communications in heat and mass transfer, 2017, 84: 134-143.
[19] 胡志培, 李安桂, 高然. 矩形及楔形装置蓄热性能的对比实验研究[J]. 西安建筑科技大学学报(自然科学版), 2019, 51(1): 134-139.
HU Z P, LI A G, GAO R.A comparison study on the thermal performance between rectangular and wedge-shaped thermal storage units[J]. Journal of Xi’an University of Architecture and Technology (natural science edition), 2019, 51(1): 134-139.
PDF(4842 KB)

Accesses

Citation

Detail

Sections
Recommended

/