RELIABILITY ASSESSMENT OF PHOTOVOLTAIC MODULES WITH INITIAL DEGRADATION RANDOM CHARACTERISTICS

Yan Weian, Kong Wenqi, Liu Weidong, Xiong Yuhui, Zhang Jinjing

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (3) : 152-157.

PDF(1360 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(1360 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (3) : 152-157. DOI: 10.19912/j.0254-0096.tynxb.2020-0679

RELIABILITY ASSESSMENT OF PHOTOVOLTAIC MODULES WITH INITIAL DEGRADATION RANDOM CHARACTERISTICS

  • Yan Weian1,2, Kong Wenqi1, Liu Weidong3, Xiong Yuhui4, Zhang Jinjing1
Author information +
History +

Abstract

Based on the inverse Gaussian process, considering the random characteristics of the initial degradation, the performance degradation model of PV modules are established and its reliability is evaluated. First of all, the failure mechanism analysis shows that the degradation process of photovoltaic modules is mainly manifested as the attenuation of output power, which has monotonous and random characteristics, and the initial degradation also has random characteristics, so as to establish the inverse Gaussian performance degradation model with time shift of photovoltaic modules. Then, based on the maximum likelihood estimation method, the model parameters and reliability functions are estimated. Finally, based on the model, an example of photovoltaic module degradation is analyzed, and compared with the traditional inverse Gaussian degradation model, the results show that the model can describe the degradation law of photovoltaic modules more accurately, and the reliability estimation results are more in line with the reality.

Key words

reliability / photovoltaic module / degradation / inverse Gaussian process / random initial degradation

Cite this article

Download Citations
Yan Weian, Kong Wenqi, Liu Weidong, Xiong Yuhui, Zhang Jinjing. RELIABILITY ASSESSMENT OF PHOTOVOLTAIC MODULES WITH INITIAL DEGRADATION RANDOM CHARACTERISTICS[J]. Acta Energiae Solaris Sinica. 2022, 43(3): 152-157 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0679

References

[1] 北极星太阳能光伏网讯[EB10L]. https://guangfu.bjx.com.cn/news/20191114/1020689.shtml.
[2] 余荣斌. 基于性能退化的光伏组件服役可靠性评估方法研究[D]. 广州: 华南理工大学, 2016.
YU R B.Photovoltaic modules service reliability evaluation based on performance degradation[D]. Guangzhou: South China University of Technology, 2016.
[3] 北极星太阳能光伏网讯[EB10L]. https://guangfu.bjx.com.cn/news/20141218/574320.shtml.
[4] 孙权, 冯静, 潘正强. 基于性能退化的长寿命产品寿命预测技术[M]. 北京: 科学出版社, 2015.
SUN Q, FENG J, PAN Z Q.Long life prediction technology based on performance degradation[M]. Beijing: Science Press, 2015.
[5] LIU W D, JIANG X H, LI S S, et al.Photovoltaic module regional clustering in mainland China and application based on factors influencing field reliability[J]. Renewable and sustainable energy reviews, 2020, 133: 110339.
[6] NDIAYE A, CHARKI A, KOBI A, et al.Degradations of silicon photovoltaic modules: A literature review[J]. Solar energy, 2013, 96: 140-151.
[7] CHARKI A, LARONDE R, BIGAUD D.Accelerated degradation testing of a photovoltaic module[J]. Journal of photonics for energy, 2013, 3(1): 1-10.
[8] 余荣斌, 刘桂雄, 徐欢. 基于β分布统示法的光伏组件性能退化可靠度估算[J]. 仪器仪表学报, 2015, 36(11): 2586-2593.
YU R B, LIU G X, XU H.β-distribution uniform expression based photovoltaic modules reliability evaluation with degradation data distribution[J]. Chinese journal of scientific instrument, 2015, 36(11): 2586-2593.
[9] 刘桂雄, 余荣斌, 徐欢. 加速退化下光伏组件伪失效寿命分布估算[J]. 光学精密工程, 2016, 24(9): 2183-2191.
LIU G X, YU R B, XU H.Estimation of pseudo-failure lifetime distribution for photovoltaic modules based on accelerated degradation[J]. Optics and precision engineering, 2016, 24(9): 2183-2191.
[10] PARK S H, KIM J H.Application of gamma process model to estimate the lifetime of photovoltaic modules[J]. Solar energy, 2017, 147: 390-398.
[11] KAHOUL N, CHENNI R, CHEGHIB H, et al.Evaluating the reliability of crystalline silicon photovoltaic modules in harsh environment[J]. Renewable energy, 2017, 109: 66-72.
[12] GONZÁLEZ J R, VÁZQUEZ M, ALGORA C, et al. Real-time reliability test for a CPV module based on a power degradation model[J]. Progress in photovoltaics research & applications, 2011, 19(1): 113-122.
[13] XIAO X, YE Z S.Optimal design for destructive degradation tests with random initial degradation values using the Wiener process[J]. IEEE transactions on reliability, 2016, 65(3): 1327-1342.
[14] 李军星, 王治华, 刘成瑞, 等. 随机效应Wiener过程退化可靠性分析方法[J]. 系统工程理论与实践, 2018, 38(9): 2434-2440.
LI J X, WANG Z H, LIU C R, et al.Reliability analysis based on random-effect Wiener process degradation model[J]. System engineering theory and practice, 2018, 38(9): 2434-2440.
[15] 格林M A. 太阳能电池工作原理、技术和系统应用[M]. 上海: 上海交通大学出版社, 2010.
GREEN M A.Solar cell working principle, technology and system application[M]. Shanghai: Shanghai Jiao Tong University Press, 2010.
[16] FOUAD M M, SHIHAT A, LAMIA A, et al.An integrated review of factors influencing the performance of photovoltaic panels[J]. Renewable & sustainable energy reviews, 2017, 80: 1499-1511.
[17] SANTHAKUMARI M, SAGAR N.A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: failure detection methods and essential mitigation techniques[J]. Renewable and sustainable energy reviews, 2019, 110: 83-100.
[18] MUNOZ M A, ALONSO-GARCIA M C, Vela N, et al. Early degradation of silicon PV modules and guaranty conditions[J]. Solar energy, 2011, 85(9): 2264-2274.
[19] YE Z S, XIE M.Stochastic modelling and analysis of degradation for highly reliable products[J]. Applied stochastic models in business and industry, 2015, 31(1): 16-32.
[20] MISHRA S, VANLI O A.Remaining useful life estimation with lamb-wave sensors based on wiener process and principal components regression[J]. Journal of nondestructive evaluation, 2016, 35(1): 1-13.
[21] PAN Z, BALAKRISHNAN N.Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes[J]. Reliability engineering & system safety, 2011, 96(8): 949-957.
[22] 寇海霞, 安宗文, 马强. 基于性能退化数据的风力机叶片疲劳可靠性评估[J]. 太阳能学报, 2017, 38(11): 3174-3179.
KOU H X, AN Z W, MA Q.Fatigue reliability assessment of wind turbine blades based on the performance degradation date[J]. Acta energiae solaris sinica, 2017, 38(11): 3174-3179.
[23] YE Z S, CHEN N.The inverse Gaussian process as a degradation model[J]. Technometrics, 2014, 56(3): 302-311.
[24] WANG X, XU D H.An inverse Gaussian process model for degradation data[J]. Technometrics, 2010, 52(2): 188-197.
PDF(1360 KB)

Accesses

Citation

Detail

Sections
Recommended

/