RESEARCH ON MAXIMUM POWER POINT TRACKING STRATEGY OF WIND TURBINE BASED ON SECOND ORDER SLIDING MODEL-PID CONTROL

Li Hao, Zhu Caichao, Fan Zhixin, Tan Jianjun, Song Chaosheng

Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (3) : 306-314.

PDF(7641 KB)
Welcome to visit Acta Energiae Solaris Sinica, Today is
PDF(7641 KB)
Acta Energiae Solaris Sinica ›› 2022, Vol. 43 ›› Issue (3) : 306-314. DOI: 10.19912/j.0254-0096.tynxb.2020-0702

RESEARCH ON MAXIMUM POWER POINT TRACKING STRATEGY OF WIND TURBINE BASED ON SECOND ORDER SLIDING MODEL-PID CONTROL

  • Li Hao, Zhu Caichao, Fan Zhixin, Tan Jianjun, Song Chaosheng
Author information +
History +

Abstract

Maximum power point tracking and its control procedure steadiness qualification of wind turbines are satisfied by the PSOSMC strategy, which is proposed in this work. In order to achieve the stable control of generator torque, the PSOSMC system model is established based on the PID hyperplane, and the stability of the control system is proved by the Lyapunov principles simultaneously. In this work, the PSOSMC strategy is carried out from the aspects of aerodynamic efficiency, power generation efficiency, generator torque and low-speed shaft torque. The results show that the PSOSMC proposed can improve the power generation efficiency of wind turbines compared with other control strategies. Besides, the fluctuation of torque of the generator and the low-speed shaft reduce significantly. It juggles maximum power conversion and pleasurable operational steadiness of wind turbines.

Key words

wind turbines / maximum power point trackers / sliding mode control / system stability

Cite this article

Download Citations
Li Hao, Zhu Caichao, Fan Zhixin, Tan Jianjun, Song Chaosheng. RESEARCH ON MAXIMUM POWER POINT TRACKING STRATEGY OF WIND TURBINE BASED ON SECOND ORDER SLIDING MODEL-PID CONTROL[J]. Acta Energiae Solaris Sinica. 2022, 43(3): 306-314 https://doi.org/10.19912/j.0254-0096.tynxb.2020-0702

References

[1] BARAMBONES O.Robust wind speed estimation and control of variable speed wind turbines[J]. Asian journal of control, 2019, 21(2): 856-867.
[2] HUANG C, LI F X, JIN Z Q.Maximum power point tracking strategy for large-scale wind generation systems considering wind turbine dynamics[J]. IEEE transactions on industrial electronics, 2015, 62(4): 2530-2539.
[3] SARAVANAKUMAR R, JENA D.Validation of an integral sliding mode control for optimal control of a three blade variable speed variable pitch wind turbine[J]. International journal of electrical power & energy systems, 2015, 69: 421-429.
[4] CHEN Z Y, YIN M H, ZHOU L J, et al.Variable parameter nonlinear control for maximum power point tracking considering mitigation of drive-train load[J]. IEEE/CAA journal of automatica sinica, 2017, 4(2): 95-102.
[5] YIN M H, YANG Z Q, XU Y, et al.Aerodynamic optimization for variable-speed wind turbines based on wind energy capture efficiency[J]. IEEE transactions on industrial electronics, 2015, 62(4): 2530-2539.
[6] CHAN C M, BAI H L, HE D Q.Blade shape optimization of the savonius wind turbine using a genetic algorithm[J]. Applied energy, 2018, 213: 148-157.
[7] FAN Z X, ZHU C C.The optimization and the application for the wind turbine power-wind speed curve[J]. Renewable energy, 2019, 140: 52-61.
[8] GAO X X, YANG H X, LU L.Optimization of wind turbine layout position in a wind farm using a newly-developed two-dimensional wake model[J]. Applied energy, 2016, 174: 192-200.
[9] YANG J, LI S H, SU J Y, et al.Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances[J]. Automatica, 2013, 49(7): 2287-2291.
[10] THONGAM J S, OUHROUCHE M.MPPT control methods in wind energy conversion systems[J]. Fundamental and advanced topics in wind power, 2011(1): 339-360.
[11] PUCCI M, CIRRINCIONE M.Neural MPPT control of wind generators with induction machines without speed sensors[J]. IEEE transactions on industrial electronics, 2010, 58(1): 37-47.
[12] 周连俊, 殷明慧, 周前, 等. 适应湍流风况变化的风能捕获量-载荷多目标优化最大功率点跟踪控制[J]. 电网技术, 2017, 41(1): 64-71.
ZHOU L J, YIN M H, ZHOU Q, et al.Improved MPPT control of wind turbines based on multi-objective optimization of wind energy capture and stress with consideration of variable turbulence conditions[J]. Power system technology, 2017, 41(1): 64-71.
[13] MERIDA J, AGUILAR L T, DAVILA J, et al.Analysis and synthesis of sliding mode control for large scale variable speed wind turbine for power optimization[J]. Renewable energy, 2014, 71: 715-728.
[14] EVANGELISTA C, PULESTON P, VALENCIAGA F.Wind turbine efficiency optimization. comparative study of controllers based on second order sliding modes[J]. International journal of hydrogen energy, 2010, 35(11): 5934-5939.
[15] SUN H C, HAN Y Z, ZHANG L Y.Maximum wind power tracking of doubly fed wind turbine system based on adaptive gain second-order sliding mode[J]. Journal of control science and engineering, 2018, 2018: 1-11.
[16] EVANGELISTA C, PULESTON P, VALENCIAGA F, et al.Lyapunov-designed super-twisting sliding mode control for wind energy conversion optimization[J]. IEEE transactions on industrial electronics, 2013, 60(2): 538-545.
[17] BELTRAN B, AHMED-ALI T, BENBOUZID M E H. Sliding mode power control of variable-speed wind energy conversion systems[J]. IEEE transactions on energy conversion, 2008, 23(2): 551-558.
[18] HENRIKSEN L C.Model predictive control of a wind turbine (master thesis)[D]. Copenhagen: Technical University of Denmark, 2007.
[19] KUMAR D, CHATTERJEE K.A review of conventional and advanced MPPT algorithms for wind energy systems[J]. Renewable and sustainable energy reviews, 2016, 55: 957-970.
[20] BURTON T.Wind energy handbook[M]. 2nd Ed. Oxford: John Wiley & Sons, Ltd., 2011.
[21] AZIZI A, NOURISOLA H, SHOJAMAJIDABAD S, et al.Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller[J]. Renewable energy, 2019, 135: 55-65
[22] BELTRAN B, AHMED-ALI T, BENBOUZID M E H. High-order sliding-mode control of variable-speed wind turbines[J]. IEEE transactions on industrial electronics, 2009, 56(9): 3314-3321.
[23] BOUKHEZZAR B, SIGUERDIDJANE H.Nonlinear control of a variable-speed wind turbine using a two-mass model[J]. IEEE transactions on energy conversion, 2011, 26(1): 149-162
[24] THOMSEN S C.Nonlinear control of a wind turbine[D]. Copenhagen: Technical University of Denmark Denmark, 2006.
[25] MARQUEZ H J.Nonlinear control systems-Analysis and design[J]. IEEE transactions on automatic control, 2004, 49: 1225-1226.
[26] JIAO X, YANG Q, FAN B, et al.EWSE and uncertainty and disturbance estimator based pitch angle control for wind turbine systems operating in above-rated wind speed region[J]. Journal of dynamic systems, measurement, and control, 2020, 142(3): 031006.
[27] VIHRIALA H, PERALA R, MAKILA P, et al.PG3. 25 A gearless wind power drive performance part 2: control system[C]//2001 Earopean Wind Energy Conference and Exhibition(EWEC′01), Copenhagen, Denmark, 2001: 1090-1093.
[28] BOUKHEZZAR B, SIGUERDIDJANE H.Nonlinear control of variable speed wind turbines without wind speed measurement[C]//Proceedings of the 44th IEEE Conference on Decision and control, IEEE, Seviua, Spain, 2005: 3456-3461.
[29] MÉRIDA J, AGUILAR L T, DÁVILA J. Analysis and synthesis of sliding mode control for large scale variable speed wind turbine for power optimization[J]. Renewable energy, 2014, 71:715-728.
[30] JONKMAN B J.TurbSim user’s guide: version 1.50[R]. National Renewable Energy Lab.(NREL), Golden, CO(United States), 2009.
PDF(7641 KB)

Accesses

Citation

Detail

Sections
Recommended

/